New book: "Neural Networks and Machine Learning"
Christopher Bishop
cmbishop at microsoft.com
Fri Jul 9 04:52:22 EDT 1999
New book:
"Neural Networks and Machine Learning"
Christopher M. Bishop (Ed.)
Springer-Verlag
(for information on how to order: see below)
Contents:
B. D. Ripley:
" Statistical Principles of Model Fitting"
L. Brieman:
"Bias-Variance, Regularization, Instability and Stabilization"
J. M. Buhman and N. Tishby:
"Empirical Risk Optimization: A Statistical Learning Theory of Data
Clustering"
E. D. Sontag:
"VC Dimension of Neural Networks"
R. M. Neal:
"Assessing Relevance Determination Methods using DELVE"
D. J. C. MacKay:
"Introduction to Gaussian Processes"
H. Zhu, C. K. I. Williams, R. Rohwer and M. Morciniec:
"Gaussian Regression and Optimal Finite Dimensional Linear Models"
T. S. Jaakkola and M. I. Jordan:
"Variational Methods and the QMR-DT Database"
D. Barber and C. M. Bishop:
"Ensemble Learning in Bayesian Neural Networks"
V. Vapnik:
"The Support Vector Method of Function Estimation"
B. Sallans, G. E. Hinton and Z. Ghahramani:
"A Hierarchical Community of Experts"
E. B. Baum:
"Manifesto for an Evolutionary Economics of Intelligence"
Preface:
More information about the Connectionists
mailing list