Spring School/Workshop in Montreal: LAST ANNOUNCEMENT
Yoshua Bengio
bengioy at IRO.UMontreal.CA
Thu Mar 28 09:08:04 EST 1996
******** Last reminder, there are only a few seats left: *******
Montreal Workshop and Spring School on
Artificial Neural Networks and Learning Algorithms
April 15-30 1996
Centre de Recherche Mathematique, Universite de Montreal
This workshop and concentrated course on artificial neural networks and
learning algorithms is organized by the Centre de Recherches
Mathematiques of the University of Montreal (Montreal, Quebec, Canada).
The first week of the the workshop will concentrate on learning theory,
statistics, and generalization. The second week (and beginning of third) will
concentrate on learning algorithms, architectures, applications and
implementations.
The organizers of the workshop are Bernard Goulard (Montreal), Yoshua
Bengio (Montreal), Bertrand Giraud (CEA Saclay, France) and Renato De
Mori (McGill).
The invited speakers are G. Hinton (Toronto), V. Vapnik (AT&T), M. Jordan
(MIT), H. Bourlard (Mons), T. Hastie (Stanford), R. Tibshirani (Toronto), F.
Girosi (MIT), M. Mozer (Boulder), J.P. Nadal (ENS, Paris), Y. Le Cun
(AT&T), M. Marchand (U of Ottawa), J. Shawe-Taylor (London), L. Bottou
(Paris), F. Pineda (Baltimore), J. Moody (Oregon), S. Bengio (INRS
Montreal), J. Cloutier (Montreal), S. Haykin (McMaster), M. Gori
(Florence), J. Pollack (Brandeis), S. Becker (McMaster), Y. Bengio
(Montreal), S. Nowlan (Motorola), P. Simard (AT&T), G. Dreyfus (ESPCI
Paris), P. Dayan (MIT), N. Intrator (Tel Aviv), B. Giraud (France), H.P.
Graf (AT&T).
MORE INFO AT: http://www.iro.umontreal.ca/labs/neuro/spring96/english.html
OR contact Louis Pelletier, pelletl at crm.umontreal.ca, #tel: 514-343-2197
-------------------- SCHEDULE ---------------------------------
The lectures will take place in room 5340 (5th floor) of the Pavillon
Andre-Aisenstadt on the campus of the Universite de Montreal.
Week 1
Introduction, learning theory and statistics
April 15:
9:00 - 9:30 Registration (Room 5341) & Coffee (Room 4361)
9:30 - 10:30 Y. Bengio: Introduction to learning theory and learning
algorithms
10:30 - 11:30 J.P. Nadal: Constructive learning algorithms: empirical
study of learning curves (part I)
14:00 - 15:00 G. Dreyfus: Learning to be a dynamical system (part I)
15:00 - 15:30 B. Giraud: Flexibility, robustness and algebraic
convenience of neural nets with neurons having a window-like
response function
April 16:
9:00 - 10:00 Y. Bengio: Introduction to artificial neural networks and
pattern recognition
10:00 - 11:00 F. Girosi: Neural networks and approximation theory
(part I)
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 L. Bottou: Learning theory for local algorithms
14:00 - 15:00 J.P. Nadal: Constructive learning algorithms: empirical
study of learning curves (part II)
15:00 - 16:00 G. Dreyfus: Learning to be a dynamical system (part
II)
April 17:
9:00 - 10:00 V. Vapnik: Theory of consistency of learning processes
10:00 - 11:00 L. Bottou: Stochastic gradient descent learning and
generalization
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 F. Girosi: Neural networks and approximation theory
(part II)
14:00 - 15:00 M. Marchand: Statistical methods for learning
nonoverlapping neural networks (part I)
15:00 - 16:00 J. Shawe-Taylor: A Framework for Structural Risk
Minimisation (part I)
16:00 - 16:30 Coffee Break (room 4361)
16:30 - 17:30 M. Jordan: Introduction to Graphical Models
April 18:
9:00 - 10:00 J. Shawe-Taylor: A Framework for Structural Risk
Minimisation (part II)
10:00 - 11:00 R. Tibshirani: Regression shrinkage and selection via
the lasso
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 V. Vapnik: Non-asymptotic bounds on the rate of
convergence of learning processes
14:00 - 15:00 T. Hastie: Flexible Methods for Classification (part I)
15:00 - 16:00 M. Jordan: Algorithms for Learning and Inference in
Graphical Models
April 19:
9:00 - 10:00 S. Bengio: Introduction to Hidden Markov Models
10:00 - 11:00 V. Vapnik: The learning algorithms
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 R. Tibshirani: Model search and inference by bootstrap
"bumping"
14:00 - 15:00 T. Hastie: Flexible Methods for Classification (part II)
15:00 - 16:00 M. Marchand: Statistical methods for learning
nonoverlapping neural networks (part II)
16:00 - 16:30 Coffee Break (room 4361)
16:30 - 17:30 B. Giraud: Spectrum recognition via the
pseudo-inverse method and optimal background subtraction
Week 2 and 3
Algorithms, architectures and applications
April 22:
9:00 - 9:30 Registration (room 5341) & Coffee (room 4361)
9:30 - 10:30 S. Haykin: Neurosignal Processing: A Pradigm Shift in
Statistical Signal Processing (part I)
10:30 - 11:30 H. Bourlard: Using Markov Models and Artificial
Neural Networks for Speech Recognition (part I)
14:00 - 15:00 M. Gori: Links between suspiciousness and
computational complexity
15:00 - 16:00 M. Mozer: Modeling time series with compositional
structure
16:00 - 16:30 Coffee Break (room 4361)
16:30 - 17:30 F. Pineda: Reinforcement learning and TD-lambda
April 23:
9:00 - 10:00 S. Haykin: Neurosignal Processing: A Pradigm Shift in
Statistical Signal Processing (part II)
10:00 - 11:00 F. Pineda: Hardware architecture for acoustic transient
classification
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 H. Bourlard: Using Markov Models and Artificial
Neural Networks for Speech Recognition (part I)
14:00 - 15:00 J. Pollack:
15:00 - 16:00 P. Dayan: Factor Analysis and the Helmholtz Machine
Dynamical properties of networks for cognition
16:00 - 16:30 Coffee Break (room 4361)
16:30 - 17:30 M. Mozer: Symbolically-Constrained Subsymbolic
Processing
April 24:
9:00 - 10:00 M. Gori: Number-plate recognition with neural
networks
10:00 - 11:00 J. Pollack: A co-evolutionary framework for learning
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 P. Dayan: Bias and Variance in TD Learning
14:00 - 15:00 S. Becker: Unsupervised learning and vision (part I)
15:00 - 16:00 P. Simard: Memory-based pattern recognition
April 25:
9:00 - 10:00 S. Becker: Unsupervised learning and vision (part I)
10:00 - 11:00 G. Hinton: Improving generalisation by using noisy
weights
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 N. Intrator: General methods for training ensembles of
regressors (part I)
14:00 - 15:00 S. Nowlan: Mixtures of experts
15:00 - 16:00 G. Hinton: Helmholtz machines
16:00 - 16:30 Coffee Break (room 4361)
16:30 - 17:30 Y. Le Cun: Shape Recognition with Gradient-Based
Learning Methods
April 26:
9:00 - 10:00 S. Bengio: Input/Output Hidden Markov Models
10:00 - 11:00 Y. Le Cun: Fast Neural Net Learning and Non-Linear
Optimization
11:00 - 11:30 Coffee Break (room 4361)
11:30 - 12:30 S. Nowlan: Mixture of experts to understand functional
aspects of primate cortical vision
14:00 - 15:00 N. Intrator: General methods for training ensembles of
regressors (part II)
15:00 - 16:00 P. Simard: Pattern Recognition Using a Transformation
Invariant Metric
April 29:
9:00 - 10:00 J. Moody: Artificial Neural Networks applied to finance
(part I)
10:00 - 11:00 Y. Bengio: Modeling multiple time scales and training
with a specialized financial criterion
14:00 - 15:00 H.P. Graf: Recent Developments in Neural Net
Hardware (part I)
April 30:
9:00 - 10:00 J. Moody: Artificial Neural Networks applied to finance
(part II)
10:00 - 10:30 Coffee Break (room 4361)
10:30 - 11:30 H.P. Graf: Recent Developments in Neural Net
Hardware (part II)
14:00 - 15:00 J. Cloutier:FPGA-based multiprocessor:
Implementation of Hardware-Friendly Algorithms for Neural
Networks and Image Processing
15:00 - 15:30 Coffee Break (room 4361)
15:30 - 16:30 J. Moody: Artificial Neural Networks applied to finance
(part III)
-------------------- Registration information: ---------------------
$100 (Canadian) or $75 (US) if received before April 1st
$150 (Canadian) or $115 (US) if received on or after April 1st
$25 (Canadian) or $19 (US) for students and post-doctoral fellows.
The number of participants will be limited, on a first-come first-served
basis. Please register early!
Registration forms and hotel informations are available at our WEB SITE:
http://www.iro.umontreal.ca/labs/neuro/spring96/english.html
For more information, contact Louis Pelletier, pelletl at crm.umontreal.ca
514-343-2197
Centre de Recherche Mathematique, Universite de Montreal, C.P. 6128,
Succ. Centre-Ville, Montreal, Quebec, H3C-3J7, Canada.
--
Yoshua Bengio
Professeur Adjoint, Dept. Informatique et Recherche Operationnelle
Pavillon Andre-Aisenstadt #3339 , Universite de Montreal,
Dept. IRO, CP 6128, Succ. Centre-Ville,
2920 Chemin de la tour, Montreal, Quebec, Canada, H3C 3J7
E-mail: bengioy at iro.umontreal.ca Fax: (514) 343-5834
web: http://www.iro.umontreal.ca/htbin/userinfo/user?bengioy
or http://www.iro.umontreal.ca/labs/neuro/
Tel: (514) 343-6804. Residence: (514) 738-6206
More information about the Connectionists
mailing list