French Doctoral Thesis available: Nonlinear Data Analysis through Self-Organizing Neural Networks
pierre.demartines@csemne.ch
pierre.demartines at csemne.ch
Tue Apr 18 10:14:00 EDT 1995
Hello,
It is my pleasure to inform you about the availability of my doc-
toral dissertation (in french only) on "Data Analysis through
Self-Organizing Neural Networks". You can get it by FTP from the
TIRFLab ftp-server (Grenoble, France).
FTP-host: tirf.inpg.fr
FTP-name: anonymous
FTP-passwd: anything (your email for instance)
FTP-file: /pub/demartin/demartin.phd94.ps.Z
(2.2 Mo compressed, 8.7 Mo uncompressed, 214 pages)
-----------------------------------------------------------------
DATA ANALYSIS THROUGH SELF-ORGANIZED NEURAL NETWORKS
Keywords
--------
Data structure (submanifold), Self-Organizing Maps (Kohonen),
Fractal Dimension, Dimension Reduction, Nonlinear Projection, Un-
folding, "VQP" algorithm, diffeomorphism, interpolation, extrapo-
lation, Multidimensional Scaling, Nonlinear Mapping, Industrial
Applications.
Abstract
--------
Data understanding is often based on hidden informations re-
trieval within a big amount of collected variables. It is a
search for linear or non linear dependencies between these ob-
served variables, and consists in reducing these variables to
small number of parameters.
A classical method, widely used for this purpose, is the so-
called Principal Component Analysis (PCA). Unfortunately, this
method is only linear, and fails to reduce data that are redun-
dant in a non linear way.
The Kohonen's Self-Organizing Maps are a type of artificial neur-
al networks, the functionality of which can be viewed as a non
linear extension of PCA: data samples are mapped onto a grid of
neurons. A major drawback of these maps, however, is their a
priori defined shape (generally a square or a rectangle), which
is rarely adapted to the shape of the parametric space to
represent.
We relax this constraint with a new algorithm, called ``Vector
Quantization and Projection'' (VQP). It is a kind of self-
organizing map, the output space of which is continuous and takes
automatically the relevant shape. From a mathematical point of
view, VQP is the search for a diffeomorphism between the raw data
set and an unknown parametric representation to be found. More
intuitively, this is an unfolding of data structure towards a
low-dimensional space, which dimension is the number of degrees
of freedom of the observed phenomenon, and can be determined
through fractal analysis of the data set.
In order to illustrate the generality of VQP, we give a wide
range of application examples (real or simulated), in several
domains such as data fusion, graphes matching, industrial process
monitoring or analysis, faults detection in devices and adaptive
routing in telecommunications.
----------------
ANALYSE DE DONNEES PAR RESEAUX DE NEURONES AUTO-ORGANISES
Mots-cles
---------
Structure de donnees (variete), cartes auto-organisantes
(Kohonen), dimension fractale, reduction de dimension, projection
non-lineaire, depliage, algorithme "VQP", diffeomorphisme, inter-
polation, extrapolation, "Multidimensional Scaling", "Nonlinear
Mapping", applications industrielles.
Resume
------
Chercher a comprendre des donnees, c'est souvent chercher a
trouver de l'information cachee dans un gros volume de mesures
redondantes. C'est chercher des dependances, lineaires ou non,
entre les variables observees pour pouvoir resumer ces dernieres
par un petit nombre de parametres.
Une methode classique, l'Analyse en Composantes Principales
(ACP), est abondamment employee dans ce but. Malheureusement, il
s'agit d'une methode exclusivement lineaire, qui est donc incapa-
ble de reveler les dependances non lineaires entre les variables.
Les cartes auto-organisantes de Kohonen sont des reseaux de neu-
rones artificiels dont la fonction peut etre vue comme une exten-
sion de l'ACP aux cas non-lineaires. L'espace parametrique est
represente par une grille de neurones, dont la forme, generale-
ment carree ou rectangulaire, doit malheureusement etre choisie a
priori. Cette forme est souvent inadaptee a celle de l'espace
parametrique recherche.
Nous liberons cette contrainte avec un nouvel algorithme, nomme
``Vector Quantization and Projection'' (VQP), qui est une sorte
de carte auto-organisante dont l'espace de sortie est continu et
prend automatiquement la forme adequate. Sur le plan mathema-
tique, VQP peut etre defini comme la recherche d'un diffeomor-
phisme entre l'espace brut des donnees et un espace parametrique
inconnu a trouver. Plus intuitivement, il s'agit d'un depliage de
la structure des donnees vers un espace de plus petite dimension.
Cette dimension, qui correspond au nombre de degres de liberte du
phenomene etudie, peut etre determinee par des methodes d'analyse
fractale du nuage de donnees.
Afin d'illustrer la generalite de l'approche VQP, nous donnons
une serie d'exemples d'applications, simulees ou reelles, dans
des domaines varies qui vont de la fusion de donnees a
l'appariement de graphes, en passant par l'analyse ou la surveil-
lance de procedes industriels, la detection de defauts dans des
machines et le routage adaptatif en telecommunications.
-----------------------------------------------------------------
FTP INSTRUCTIONS:
unix> ftp tirf.inpg.fr (or 192.70.29.33)
Name: anonymous
Password: <your e-mail address>
ftp> cd pub/demartin
ftp> binary
ftp> get demartin.phd94.ps.Z
ftp> quit
unix> uncompress demartin.phd94.ps.Z
--------------------------------------------------------------------
Pierre Demartines email: demartin at csemne.ch
C.S.E.M. Phone: (41) 38 205 252
Maladiere 71 Fax: (41) 38 205 770
CH-2007 Neuchatel Mosaic: ftp://tirf.inpg.fr/pub/HTML/tirf.html
Switzerland
--------------------------------------------------------------------
More information about the Connectionists
mailing list