Connectionists: CFP: 5th IEEE Workshop on Pervasive and Resource-constrained Artificial Intelligence (PeRConAI’26)

Paolo Dini paolo.dini at cttc.es
Wed Oct 1 11:57:04 EDT 2025


**************************************************************************
   [Please accept our apologies if you receive multiple copies of this CFP]
**************************************************************************

5th IEEE Workshop on Pervasive and Resource-constrained Artificial 
Intelligence (PeRConAI)
co-located with IEEE PerCom 2026, March 16-20, 2026, Pisa, Italy

Website: http://perconai.iit.cnr.it 
<https://urldefense.com/v3/__http://perconai.iit.cnr.it__;!!D9dNQwwGXtA!QWOqdtRbbS04WTruHR9bBpceE5iCrIJmUEw3q_PXt2ohUb521g4z1EZw4o82NqTzwG9lvtNpDE7ug8Q_2JTauSRHZQ5znRhWG0qnhw$>
Email contact for info: perconai at iit.cnr.it 
<https://urldefense.com/v3/__https://mailto:perconai@iit.cnr.it__;!!D9dNQwwGXtA!QWOqdtRbbS04WTruHR9bBpceE5iCrIJmUEw3q_PXt2ohUb521g4z1EZw4o82NqTzwG9lvtNpDE7ug8Q_2JTauSRHZQ5znRhL-tLekw$>

The PeRConAI workshop aims at fostering the development and circulation 
of new ideas and research directions on pervasive and 
resource-constrained machine learning bringing together practitioners 
and researchers working on the intersection between pervasive computing 
and machine learning, stimulating the cross-fertilization between the 
two communities.

The PeRConAI workshop solicits contributions on, but not limited to, the 
following topics:

*Foundations of Advanced Machine learning algorithms and methods for 
pervasive systems subject to resource limitations addressing the 
following open challenges:*

  * Distributed/decentralized and collaborative ML for
    resource-constrained devices (e.g., resource-efficient federated
    learning,
  * imbalanced data distribution among devices);
  * Brain- and bio-inspired ML algorithms for pervasive computing (e.g.,
    Echo State Networks, Liquid State Machines, Spiking Neural networks);
  * State-Space Models (SSMs) for resource-constrained devices;
  * Learning Foundation models at the edge;
  * Physics-informed ML for efficient training in pervasive computing,
  * Continual learning for distributed edge contexts;
  * Efficient compression of deep learning models for real-time inference;
  * Privacy-preserving and robust ML in distributed/decentralized
    learning for pervasive and resource-constrained scenarios;
  * Self- and Semi-supervised learning in pervasive and
    resource-constrained scenarios (e.g., energy efficient generative
    models);
  * Contrastive learning in distributed edge environments;
  * Split learning and Over-the-air computing for
    distributed/decentralized learning systems in pervasive and
    resource-constrained scenarios;
  * Pervasive and distributed unlearning methods;

*Applications of Advanced Machine learning algorithms, methods and 
approaches for pervasive computing under resource-limitations applied to 
the following application domains:
*

  * Health and well-being applications (e.g., activity recognition,
    health monitoring).
  * Anomaly/Novelty detection (e.g., Industry 4.0, predictive
    maintenance, condition monitoring, intrusion detection, privacy, and
    security).
  * Audio signal processing (e.g., sound event detection, speech
    recognition/processing).
  * Wireless sensing (e.g., mm-wave radars);
  * Video streams processing on resource-constrained devices.
  * Natural Language Processing and Information Retrieval (e.g.,
    conversational applications running on resource-constrained, mobile,
    or edge devices).
  * Intersection between mobile computing and ML/DL on
    resource-constrained devices.
  * Remote sensing and Earth observation (resource-efficient satellite
    edge computing);
  * AI applications in UAV, e.g., agriculture, logistics, disaster
    relief, surveillance, and infrastructure inspection;
  * Any other real-world applications and case studies wherein the
    pervasiveness of resource-constrained devices is central for
    knowledge extraction.


Submissions Guidelines
----------------------

Papers, written in IEEE LaTeX or Microsoft Word templates, must adhere 
to the formatting instructions specified here 
<https://www.ieee.org/conferences/publishing/templates>, must be 6 pages 
(10pt font, 2-column format), including text, figures, and tables.
The submission link is the following: https://edas.info/N34025


Organizing Committee
--------------------
Prof. Plamen Angelov, Lancaster University, UK
Prof. Mario Luca Bernardi, University of Sannio, IT
Dr. Paolo Dini, CTTC, ES
Dr. Franco Maria Nardini, ISTI-CNR, IT
Prof. Riccardo Pecori, eCampus University, IT and IMEM-CNR, IT
Dr. Lorenzo Valerio, IIT-CNR, IT

-- 

*Paolo Dini*
Researcher (R4)
** Sustainable Artificial Intelligence (SAI) research unit
Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
Av. Carl Friedrich Gauss, 7 - Building B4
08860 - Castelldefels
Tel.: +34 93 645 29 00

_DATA PROTECTION INFORMATION. Data controller: CENTRE TECNOLOGIC DE 
TELECOMUNICACIONS DE CATALUNYA (G62616586):_

We inform you that your identification data and the data contained in 
the emails and attached files can be incorporated into our databases, in 
order to maintain professional and / or commercial relationships, and 
that it will be preserved throughout the relationship. According to the 
current regulations, you can exercise your right to access, 
rectification, erasure, restriction of processing, to portability and to 
object by sending an email to dpo at cttc.cat.
This message and any attached document, where appropriate, may be 
confidential and intended for the original recipient only.


L'informem que les seves dades identificatives i les compreses als 
correus electrònics i fitxers adjunts poden ser incorporades a les 
nostres bases de dades amb la finalitat de mantenir relacions 
professionals i/o comercials i, que seran conservades mentre es 
mantingui aquesta relació. Si ho desitja, pot exercir el seu dret 
d'accés, rectificació, supressió, limitació del tractament, portabilitat 
i objecció enviant un correu electrònic a dpo at cttc.cat.
Aquest missatge i qualsevol document adjunt, en el seu cas, pot ser 
confidencial i destinat únicament a la persona o entitat a qui s'hagi 
enviat.

Before printing this e-mail or attachments, be sure it is necessary. It 
is in our hands to protect the environment.
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.srv.cs.cmu.edu/pipermail/connectionists/attachments/20251001/d6e3ce2d/attachment.html>


More information about the Connectionists mailing list