Connectionists: [jobs] PhD opportunity in Lille, France - Spiking Neural Networks for Video Analysis

Ioan Marius BILASCO marius.bilasco at univ-lille.fr
Mon Mar 14 09:08:51 EDT 2022


The FOX team from the CRIStAL laboratory (UMR CNRS), Lille France is 
looking to recruit a PhD student *starting as soon as possible *on the 
following subject : Spiking Neural Networks for Video Analysis

The FOX research group is part of the CRIStAL laboratory (University of 
Lille, CNRS), located in Lille, France. We focus on video analysis for 
human behavior understanding. Specifically, we develop spatio-temporal 
models of motions for tasks such as abnormal event detection, emotion 
recognition, and face alignment. We are also involved in IRCICA (CNRS), 
a research institute promoting multidisciplanary research. At IRCICA, we 
collaborate with computer scientists and experts in electronics 
engineering to create new models of neural networks that can be 
implemented on low-power hardware architectures. Recently, we designed 
state-of-the-art models for image recognition with single and 
multi-layer unsupervised spiking neural networks. We were among the 
first to succesfully apply unsupervised SNNs on modern datasets of 
computer vision. We also developed our own SNN simulator to support 
experiments with SNN on computer vision problems.
Our work is published in major journals (Pattern Recognition, IEEE 
Trans. on Affective Computing) and conferences (WACV, IJCNN) in the field.

*Abstract*: Spiking Neural Network have recently been evaluated on 
classical image recognition tasks. This work has highlighted their 
promising performances in this domain and have identified ways to 
improve them to be competitive with comparable deep learning approaches. 
In particular, it demonstrated the ability of SNN architectures to learn 
relevant patterns for static pattern recognition in an unsupervised 
manner. However, dealing with static images is not enough, and the 
computer vision community is increasingly interested in video analysis, 
for two reasons. First, video data is more and more common and 
corresponds to a wide range of applications (video surveillance, 
audio-visual productions, autonomous vehicles...). Second, this data is 
richer than isolated static images, and thus offers the possibility to 
develop more effective systems, e.g. using motion information. Thus, it 
is recognized in the community that modeling motion in videos is more 
relevant than studying visual appearance alone for tasks such as action 
or emotion recognition. The next step for SNNs is therefore to study 
their ability to model motion rather than, or in addition to, image 
appearance.

The goal of the Ph.D. candidate will be to explore the use of SNNs for 
space-time modeling in videos. This work will be targeted towards 
applications in human behavior understanding and especially action 
recognition. More specifically, the Ph.D. candidate is expected to:
*  identify what issues may prevent space-time modeling with SNNs and 
how they can be circumvented;
*  propose new supervised and unsupervised SNN models for motion 
modeling, which are compatible with hardware implementations on 
ultra-low power devices;
* evaluate the proposed models on standard datasets for video analysis.

Detailed subject: https://bit.ly/stssnnfox

Candidates must hold a Master degree (or an equivalent degree) in 
Computer Science, Statistics, Applied Mathematics or a related field. 
Experience in one or more of the following is a plus:
•        image processing, computer vision;
•        machine learning;
•        bio-inspired computing;
•        research methodology (literature review, experimentation…).

Candidates should have the following skills:
•        good proficiency in English, both spoken and written;
•        scientific writing;
•        programming (experience in C++ is a plus, but not mandatory).

This PHD thesis will be funded in the framework of the ANVI-Luxant 
industrial chair. The general objective of the Chair is to make a 
scientific and technological progress in the mastery of emerging 
information processing architectures such as neuromorphic architectures 
as an embedded artificial intelligence technique. The use-case studies 
will come from video protection in the context of retail and transportation.

The candidate will be funded for 3 years; he/she is expected to defend 
his/her thesis and graduate by the end of the contract. The monthly 
gross salary is around 2000€, including benefits (health insurance, 
retirement fund, and paid vacations).

The position is located in Lille, France. With over 110 000 students, 
the metropolitan area of Lille is one France's top education student 
cities. The European Doctoral College Lille Nord-Pas de Calais is 
headquartered in Lille Metropole and includes 3,000 PhD Doctorate 
students supported by university research laboratories. Lille has a 
convenient location in the European high-speed rail network. It lies on 
the Eurostar line to London (1:20 hour journey). The French TGV network 
also puts it only 1 hour from Paris, 35 mn from Brussels, and a short 
trips to other major centres in France such as Paris, Marseille and Lyon.

For application, please send the following information in a single PDF 
file to Dr. Marius Bilasco   (marius.bilasco at univ-lille.fr) with subject 
[PhD_Luxant-ANVI]:
* A cover letter.
* A curriculum vitae, including a list of publications, if any.
* Transcripts of grades of Master's degree.
* The contact information of two references (and any letters if available).

We look forward to receiving your application as soon as possible, but 
no later than 4.4.2022
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mailman.srv.cs.cmu.edu/pipermail/connectionists/attachments/20220314/985a6a97/attachment.html>


More information about the Connectionists mailing list