Connectionists: CFP: NIPS 2011 Workshop on Machine Learning and Inference in Neuroimaging
Irina Rish
rish at us.ibm.com
Fri Sep 2 14:57:24 EDT 2011
Call for Papers
NIPS 2011 Workshop on Machine Learning and Inference in Neuroimaging
https://sites.google.com/site/mlini2011/
December 16-17, 2011, Melia Sierra Nevada & Melia Sol y Nieve, Sierra
Nevada, Spain
Submission deadline: September 30, 2011
Overview:
--------------
Modern multivariate statistical methods have been increasingly applied to
various problems in neuroimaging, including “mind reading”, “brain
mapping”, clinical diagnosis and prognosis. Multivariate pattern analysis
(MVPA) is a promising machine-learning approach for discovering complex
relationships between high-dimensional signals (e.g., brain images) and
variables of interest (e.g., external stimuli and/or brain's cognitive
states). Modern multivariate regularization approaches can overcome the
curse of dimensionality and produce highly predictive models even in
high-dimensional, low-sample scenarios typical in neuroimaging (e.g., 10 to
100 thousands of voxels and just a few hundreds of samples).
However, despite the rapidly growing number of neuroimaging applications in
machine learning, its impact on how theories of brain function are
construed has received little consideration. Accordingly, machine-learning
techniques are frequently met with skepticism in the domain of cognitive
neuroscience. In this workshop, we intend to investigate the implications
that follow from adopting machine-learning methods for studying brain
function. In particular, this concerns the question how these methods may
be used to represent cognitive states, and what ramifications this has for
consequent theories of cognition. Besides providing a rationale for the use
of machine-learning methods in studying brain function, a further goal of
this workshop is to identify shortcomings of state-of-the-art approaches
and initiate research efforts that increase the impact of machine learning
on cognitive neuroscience.
Moreover, from the machine learning perspective, neuroimaging is a rich
source of challenging problems that can facilitate development of novel
approaches. For example, feature extraction and feature selection
approaches become particularly important in neuroimaging, since the primary
objective is to gain a scientific insight rather than simply learn a
``black-box'' predictor. However, unlike some other applications where the
set features might be quite well-explored and established by now,
neuroimaging is a domain where a machine-learning researcher cannot simply
"ask a domain expert what features should be used", since this is
essentially the question the domain expert themselves are trying to figure
out. While the current neuroscientific knowledge can guide the definition
of specialized 'brain areas', more complex patterns of brain activity, such
as spatio-temporal patterns, functional network patterns, and other
multivariate dependencies remain to be discovered mainly via statistical
analysis.
The list of open questions of interest to the workshop includes, but is not
limited to the following:
● How can we interpret results of multivariate models in a
neuroscientific context?
● How suitable are MVPA and inference methods for brain mapping?
● How can we assess the specificity and sensitivity?
● What is the role of decoding vs. embedded or separate feature
selection?
● How can we use these approaches for a flexible and useful
representation of neuroimaging data?
● What can we accomplish with generative vs. discriminative modelling?
Workshop Format:
--------------------------
In this two-day workshop we will explore perspectives and novel methodology
at the interface of Machine Learning, Inference, Neuroimaging and
Neuroscience. We aim to bring researchers from machine learning and
neuroscience community together, in order to discuss open questions,
identify the core points for a number of the controversial issues, and
eventually propose approaches to solving those issues.
The workshop will be structured around 3 main topics:
- machine learning and pattern recognition methodology
- causal inference in neuroimaging
- linking machine learning, neuroimaging and neuroscience
Each session will be opened by 2-3 invited talks, and an in depth
discussion. This will be followed by original contributions. Original
contributions will also be presented and discussed during a poster session.
The workshop will end with a panel discussion, during which we will address
specific questions, and invited speakers will open each segment with a
brief presentation of their opinion.
This workshop proposal is part of the PASCAL2 Thematic Programme on
Cognitive Inference and Neuroimaging
( http://mlin.kyb.tuebingen.mpg.de/ ).
Paper Submission:
--------------------------
We seek for submission of original research papers. The length of the
submitted papers should not exceed 4 pages in Springer format (here are the
LaTeX2e style files). We aim at publishing accepted paper after the
workshop in a proceedings volume that contains full papers, together with
review papers by the invited speakers. Authors are expected to prepare a
full 8 page paper for the final camera ready version after the workshop.
Important dates:
--------------------------
- September 30, 2011 - paper submission
- October 15th, 2011 - notification of acceptance/rejection
- December 16th - 17th - Workshop in Sierra Nevada, Spain, following the
NIPS conference
Invited Speakers:
--------------------------
Polina Golland (MIT, US)
James V. Haxby (Dartmouth College, US)
Tom Mitchell (CMU, US)
Daniel Rueckert (Imperial College, UK)
Peter Spirtes (CMU, US)
Gaël Varoquaux (Neurospin/INRIA, France)
Program Committee:
--------------------------
Guillermo Cecchi (IBM T.J. Watson Research Center)
Melissa Carroll (Google)
Moritz Grosse-Wentrup (Max Planck Institute for Intelligent Systems,
Tübingen, Germany)*
James V. Haxby (Dartmouth College, USA, University of Trento, Italy)
Georg Langs (Medical University of Vienna)*
Bjoern Menze (ETH Zuerich, CSAIL, MIT)
Janaina Mourao-Miranda (University College London, United Kingdom)
Vittorio Murino (University of Verona/Istituto Italiano di Tecnologia,
Italy)
Francisco Pereira (Princeton University)
Irina Rish (IBM T.J. Watson Research Center)*
Mert Sabuncu (Harvard Medical School)
Bertrand Thirion (INRIA, NEUROSPIN)
-------------- next part --------------
An HTML attachment was scrubbed...
URL: https://mailman.srv.cs.cmu.edu/mailman/private/connectionists/attachments/20110902/69b3bf3f/attachment-0001.html
More information about the Connectionists
mailing list