ICMS Workshop on the Vapnik-Chervonenkis Dimension, Edinburgh
Mark Jerrum
mrj at dcs.ed.ac.uk
Wed Jul 3 10:43:08 EDT 1996
[For distribution on the connectionist mailing list: thanks!]
**************************************************************
*** ***
*** ICMS WORKSHOP on the VAPNIK-CHERVONENKIS DIMENSION ***
*** Edinburgh, 9th--13th September 1996 ***
*** ***
*** An interdisciplinary meeting of interest to ***
*** probabilists, statisticians, theoretical computer ***
*** scientists, and the machine learning community ***
*** ***
**************************************************************
The International Centre for Mathematical Sciences (ICMS) at Edinburgh
will hold a Workshop on the Vapnik-Chervonenkis Dimension(*) in the week
9th--13th September 1996. The workshop will take place at the ICMS's
headquarters at 14 India Street, Edinburgh, the birthplace of James Clerk
Maxwell, which has recently been adapted to support meetings with about
50 participants. We (the organisers or the workshop) envisage
a multidisciplinary meeting covering the topic in all its aspects:
probability and statistics, computational learning theory, geometry,
and applications in computer science. The following invited speakers
have agreed to participate:
Shai Ben-David, Technion, Haifa, Israel;
David Haussler, University of California at Santa Cruz, USA;
Jiri Matousek, Charles University, Prag, Czech Republic;
V. N. Vapnik, AT&T Bell Laboratories, Holmdel, NJ, USA.
A registration form is available from the workshop's WWW page at
http://www.dcs.ed.ac.uk/~mrj/VCWorkshop/
(also accessible from the ICMS home page). Alternatively, intending
participants may contact the ICMS by post or e-mail:
Margaret Cook
ICMS
14 India Street
Edinburgh EH3 6EZ
Scotland
Phone: +44 (0)131-220-1777
Fax: +44 (0)131-220-1053
E-mail: icms at maths.ed.ac.uk
Those interested in participating should return the registration form
as soon as possible, as the total number of places is limited by the size
of the venue. There will be ample scope for contributed talks.
Mark Jerrum, Angus MacIntyre, and John Shawe-Taylor (Workshop organisers)
(*) The Vapnik-Chervonenkis (VC) dimension is a combinatorial parameter
of a set system (equivalently, of a class of predicates) which, informally,
can be said to characterise the expressibility of the class. This parameter
is of great significance in a wide range of applications: in statistics,
theoretical computer science, and machine learning, for example.
In statistics, one may identify ``set'' with ``event,'' in which case
finite VC dimension entails a _uniform_ analogue of the strong law of large
numbers for the class of events in question. (This is the situation
described by the phrase ``uniform convergence of empirical measure.'')
In learning theory (the mathematical theory of inductive inference),
one may identify ``set'' with ``concept,'' in which case the VC dimension
of the concept class gives quite tight bounds on the sample size that
is necessary and sufficient for a learner to form an accurate hypothesis
from classified examples.
More information about the Connectionists
mailing list