new paper on learning curves
Klaus Mueller
klaus at sat.t.u-tokyo.ac.jp
Fri Jul 28 01:50:23 EDT 1995
FTP-host: archive.cis.ohio-state.edu
FTP-file: pub/neuroprose/klaus.lcurve.ps.Z
The following paper is now available for copying from the Neuroprose
repository: klaus.lcurve.ps.Z
klaus.lcurve.ps.Z
(129075 bytes) 26 pages.
M\"uller, K.-R., Murata, N., Finke, M., Schulten, K., Amari, S.:
A Numerical Study on Learning Curves in Stochastic Multi-Layer
Feed-Forward Networks
The universal asymptotic scaling laws proposed by Amari et al.
are studied in large scale simulations using a CM5.
Small stochastic multi-layer feed-forward networks trained with
back-propagation are investigated. In the range of a
large number of training patterns $t$, the asymptotic generalization
error scales as $1/t$ as predicted. For a medium range $t$ a faster
$1/t^2$ scaling is observed.
This effect is explained by using higher order corrections of the
likelihood expansion. It is shown for small $t$ that the scaling law
changes drastically, when the network undergoes a transition
from ineffective to effective learning.
(University of Tokyo Technical Report METR 03-95 and submitted)
* NO HARDCOPIES *
Best regards,
Klaus
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Dr. Klaus-Robert M\"uller
C/o Prof. Dr. S. Amari
Department of Mathematical Engineering
University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo 113 , Japan
mail: klaus at sat.t.u-tokyo.ac.jp
Fax: +81 - 3 - 5689 5752
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
PERMANENT ADRESS:
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
Dr. Klaus-Robert M\"uller
GMD First (Gesellschaft f. Mathematik und Datenverarbeitung)
Rudower Chaussee 5, 12489 Berlin
Germany
&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
More information about the Connectionists
mailing list