paper announcement
jb@informatik.uni-bonn.de
jb at informatik.uni-bonn.de
Thu Jan 26 00:20:10 EST 1995
The following papers are available by anonymous ftp:
------------------------------------------------------------------------
FTP-host: atlas.cs.uni-bonn.de (131.220.10.29)
FTP-file: pub/papers/hofmann.nips94.ps.gz
------------------------------------------------------------------------
Multidimensional Scaling and Data Clustering
T. Hofmann and J. Buhmann
Rheinische Friedrich--Wilhelms--Universitaet
Institut fuer Informatik III
Roemerstrasse 164
D-53117 Bonn, Germany
Abstract:
Visualizing and structuring pairwise dissimilarity data are difficult
combinatorial optimization problems known as "multidimensional scaling"
or "pairwise data clustering. Algorithms for embedding dissimilarity
data set in a Euclidian space, for clustering these data and for
actively selecting data to support the clustering process are
discussed in the maximum entropy framework. Active data selection
provides a strategy to discover structure in a data set efficiently
with partially unknown data.
------------------------------------------------------------------------
FTP-host: atlas.cs.uni-bonn.de (131.220.10.29)
FTP-file: pub/papers/buhmann.icpr94.ps.gz
------------------------------------------------------------------------
A Maximum Entropy Approach to Pairwise Data Clustering
Abstract:
Partitioning a set of data points which are characterized by their
mutual dissimilarities instead of an explicit coordinate
representation is a difficult, NP-hard combinatorial
optimization problem. We formulate this optimization problem of a
pairwise clustering cost function in the maximum entropy framework
using a variational principle to derive corresponding data
partitionings in a d-dimensional Euclidian space. This approximation
solves the embedding problem and the grouping of these data into clusters
simultaneously and in a selfconsistent fashion.
More information about the Connectionists
mailing list