<div dir="ltr"><span id="gmail-docs-internal-guid-2c8bc425-7fff-666e-ffea-a3ce8bcc71bf"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">[Apologies for multiple postings]</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEF 2025</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Multimedia Retrieval in CLEF</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="http://www.imageclef.org/2025/">http://www.imageclef.org/2025/</a></span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">*** CALL FOR PARTICIPATION ***</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEF 2025 is an evaluation campaign that is being organized as part of the CLEF (Conference and Labs of the Evaluation Forum) labs. The campaign offers several research tasks that welcome participation from teams around the world.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">The results of the campaign appear in the working notes proceedings, published by CEUR Workshop Proceedings (CEUR-WS.org) and are presented in the CLEF conference. Selected contributions among the participants, will be invited for publication in the following year in the Springer Lecture Notes in Computer Science (LNCS) together with the annual lab overviews.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Target communities involve (but are not limited to): information retrieval (text, vision, audio, multimedia, social media, sensor data, etc.), machine learning, deep learning, data mining, natural language processing, image and video processing, computer vision, with special attention to the challenges of multi-modality, multi-linguality, and interactive search.</span></p><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">*** 2025 TASKS ***</span></p><ul style="margin-top:0px;margin-bottom:0px"><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEFmedical Automatic Image Captioning</span></p></li><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEFmedical Synthetic Medical Images Created via GANs</span></p></li><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEFmedical Visual Question Answering</span></p></li><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEFmedical Multimodal And Generative TelemedICine (MAGIC)</span></p></li><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Image Retrieval/Generation for Arguments</span></p></li><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEFtoPicto</span></p></li><li dir="ltr" style="list-style-type:disc;font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline;white-space:pre"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" role="presentation"><span style="font-size:11pt;background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">ImageCLEF Multimodal Reasoning</span></p></li></ul><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#ImageCLEFmedical Automatic Image Captioning (9th edition)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/medical/caption">https://www.imageclef.org/2025/medical/caption</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Interpreting and summarizing the insights gained from medical images such as radiology output is a time-consuming task that involves highly trained experts and often represents a bottleneck in clinical diagnosis pipelines.The Automatic Image Captioning task is split into 2 subtasks: Concept Detection Task, based on identifying the presence and location of relevant concepts in a large corpus of medical images and the Caption Prediction Task, where participating systems are tasked with composing coherent captions for the entirety of an image</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Hendrik Damm, Johannes Rückert, Christoph M. Friedrich, Louise Bloch, Raphael Brüngel, Ahmad Idrissi-Yaghir, Benjamin Bracke (University of Applied Sciences and Arts Dortmund, Germany), Asma Ben Abacha (Microsoft, USA), Alba García Seco de Herrera (University of Essex, UK), Henning Müller (University of Applied Sciences Western Switzerland, Sierre, Switzerland), Henning Schäfer, Tabea M. G. Pakull (Institute for Transfusion Medicine, University Hospital Essen, Germany), Cynthia S. Schmidt, Obioma Pelka (Institute for Artificial Intelligence in Medicine, Germany)</span></p><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#ImageCLEFmedical Synthetic Medical Images Created via GANs (3rd edition)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/medical/gan">https://www.imageclef.org/2025/medical/gan</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">The task aims to further investigate the hypothesis that generative models generate synthetic medical images that retain "fingerprints" from the real images used during their training. These fingerprints raise important security and privacy concerns, particularly in the context of personal medical image data being used to create artificial images for various real-life applications. In the first subtask, participants will analyze synthetic biomedical images to determine whether specific real images were used in the training process of generative models. In the second subtask, participants will link each synthetic biomedical image to the specific subset of real data used during its generation. The goal is to identify the particular dataset of real images that contributed to the training of the generative model responsible for creating each synthetic image.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Alexandra Andrei, Liviu-Daniel Ștefan, Mihai Gabriel Constantin, Mihai Dogariu, Bogdan Ionescu (National University of Science and Technology POLITEHNICA Bucharest, Romania), Ahmedkhan Radzhabov, Yuri Prokopchuk (National Academy of Science of Belarus, Minsk, Belarus), Vassili Kovalev (Belarusian Academy of Sciences, Minsk, Belarus), Henning Müller (University of Applied Sciences Western Switzerland, Sierre, Switzerland)</span></p><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#ImageCLEFmedical Visual Question Answering (3rd edition)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/medical/vqa">https://www.imageclef.org/2025/medical/vqa</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">This year, the challenge looks at the integration of Visual Question Answering (VQA) with synthetic gastrointestinal (GI) data, aiming to enhance diagnostic accuracy and learning algorithms. The challenge includes developing algorithms that can interpret and answer questions based on synthetic GI images, creating advanced synthetic images that mimic accurate diagnostic visuals in detail and variability, and evaluating the effectiveness of VQA techniques with both synthetic and real GI data.</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">The 1st subtask asks participants to build algorithms that can accurately interpret and respond to questions pertaining to gastrointestinal (GI) images. This involves understanding the context and details within the images and providing precise answers that would assist in medical diagnostics, while the 2nd subtask focuses on the generation of synthetic GI images that are highly detailed and variable enough to closely resemble real medical images.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Steven A. Hicks, Sushant Gautam, Michael A. Riegler, Vajira Thambawita, Pål Halvorsen (SimulaMet, Norway)</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#ImageCLEFmedical Multimodal And Generative TelemedICine (MEDIQA-MAGIC) (3rd edition)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/medical/mediqa">https://www.imageclef.org/2025/medical/mediqa</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">The task extends on the previous year’s dataset and challenge based on multimodal dermatology response generation. Participants will be given a clinical narrative context along with accompanying images. The task is divided into two relevant sub-parts: (i) segmentation of dermatological problem regions, and (ii) providing answers to closed-ended questions (participants will be given a dermatological query, its accompanying images, as well as a closed-question with accompanying choices – the task is to select the correct answer to each question)</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Asma Ben Abacha, Wen-wai Yim, Noel Codella (Microsoft), Roberto Andres Novoa (Stanford University), Josep Malvehy (Hospital Clinic of Barcelona)</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#Image Retrieval/Generation for Arguments  (4th edition)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/argument-images">https://www.imageclef.org/2025/argument-images</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Given a set of arguments, the task is to return for each argument several images that help convey the argument. A suitable image could depict the argument or show a generalization or specialization. Participants can optionally add a short caption that explains the meaning of the image. Images can be either retrieved from the focused crawl or generated using an image generator.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Maximilian Heinrich, Johannes Kiesel, Benno Stein (Bauhaus-Universität Weimar), Moritz Wolter (Leipzig University), Martin Potthast (University of Kassel, hessian.AI, scads.AI)</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#ImageCLEFtoPicto (3rd edition)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/topicto">https://www.imageclef.org/2025/topicto</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">The goal of ToPicto is to bring together linguists, computer scientists, and translators to develop new translation methods to translate either speech or text into a corresponding sequence of pictograms. The task refers to the relationship between text and related pictograms and is composed of 2 subtasks: the Text-to-Picto task, which focuses on the automatic generation of a corresponding sequence of pictogram terms and the Speech-to-Picto task, which focuses on directly translating speech to pictogram terms.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Diandra Fabre, Cécile Macaire, Benjamin Lecouteux, Didier Schwab (Université Grenoble Alpes, LIG, France)</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">#ImageCLEF Multimodal Reasoning (new)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.imageclef.org/2025/multimodalreasoning">https://www.imageclef.org/2025/multimodalreasoning</a></span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">MultimodalReason is a new task focusing on Multilingual Visual Question Answering (VQA). The formulation of the task is the following: Given an image of a question with 3-5 possible answers, participants must identify the single correct answer.The task is split into many subtasks, each handling a different language (English, Bulgarian, Arabic, Serbian, Italian, Hungarian, Croatian, Urdu, Kazakh, Spanish, with a few more on the way). The task's goal is to assess modern LLMs' reasoning capabilities on complex inputs, presented in different languages, across various subjects.</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Organizers: Dimitar Dimitrov, Ivan Koychev (Sofia University "St. Kliment Ohridski", Bulgaria), Rocktim Jyoti Das, Zhuohan Xie, Preslav Nakov (Mohamed bin Zayed University of Artificial Intelligence (MBZUAI), Abu Dhabi, UAE)</span></p><br><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">*** IMPORTANT DATES ***</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">(may vary depending on the task)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">- Run submission: May 10, 2025</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">- Working notes submission: May 30, 2025</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">- CLEF 2023 conference: September 9-12, 2025, Madrid, Spain</span></p><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">*** REGISTRATION ***</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Follow the instructions here <a href="https://www.imageclef.org/2025">https://www.imageclef.org/2025</a></span></p><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">*** OVERALL COORDINATION ***</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Bogdan Ionescu, Politehnica University of Bucharest, Romania</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Henning Müller, HES-SO, Sierre, Switzerland</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Cristian Stanciu, Politehnica University of Bucharest, Romania</span></p><br><br><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">On behalf of the organizers,</span></p><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline">Cristian Stanciu</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:11pt;font-family:Arial,sans-serif;color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;font-variant-alternates:normal;vertical-align:baseline"><a href="https://www.aimultimedialab.ro/">https://www.aimultimedialab.ro/</a></span></p></span><br class="gmail-Apple-interchange-newline"></div>