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Abstract: Large language models (LLMs), like GPT4, ChatGPT, Llama 2 and MISTRAL have revolu-
tionized the field of Machine Learning. Recently, LLMs have been successfully adapted in the context
of chemistry, due to the efficient representation of molecules by means of SMILES and SELFIES lan-
guages. Molecular/material design, which consists in the discovery of new molecules and materials,
is a field of central importance, with multiple socio-technological implications, for which vibrational
spectroscopy represents an essential experimental technique. This project proposes a bi-disciplinary
approach to material design from the perspectives of LLMs and vibrational spectroscopy. In a first step,
the prediction of vibrational spectra from molecular SMILES/SELFIES will be studied. In a second
step, the challenging inverse problem of predicting SMILES/SELFIES from corresponding spectra will
be considered – a direction which has never been achieved in the literature. Overall, this project con-
stitutes a progress in the domains of molecular reconstruction in material design and inverse problems
in machine learning.

Keywords: Machine Learning, Deep Learning; Chemoinformatics; Large Language Models (LLMs);
Graph Neural Networks (GNNs); Inverse Problems; Molecular/Material Design; Vibrational Spec-
troscopy; Molecular Structures.

Résumé: Les grands modèles de langage (LLMs), tels que GPT4, ChatGPT, Llama 2 et MISTRAL,
ont révolutionné le domaine de l’apprentissage automatique. Récemment, les LLMs ont été adaptés
avec succès dans le domaine de la chimie théorique, en raison de la représentation efficace des
molécules par le biais des langages SMILES et SELFIES. Par ailleurs, la conception de matériaux et
de molécules, qui consiste en la découverte de nouveaux composés moléculaires, est un domaine
d’importance majeure, aux implications socio-technologiques multiples, et pour lequel la spectroscopie
vibrationnelle représente une technique expérimentale essentielle. Ce projet propose une approche
bi-disciplinaire du design moléculaire par le biais des LLMs et de la spectroscopie vibrationnelle.
Premièrement, la prédiction de spectres vibrationnels à partir de SMILES/SELFIES moléculaires sera
étudiée. Deuxièmement, le problème inverse, plus complexe, de la prédiction de SMILES/SELFIES à
partir de spectres vibrationnels sera considéré, une direction qui n’a à ce jour jamais été réalisée. Plus
généralement, ce projet constitue un progrès dans les domaines de la reconstruction moléculaire en
design de matériaux, et des problèmes inverses en apprentissage automatique.

Mots-clés: Apprentissage automatique, Apprentissage profond; Chémoinformatique; Grands modèles
de langages (LLMs); Réseaux de neurones graphiques (GNN); Problèmes inverses; Design
moléculaire/matériel; Spectroscopie vibrationnelle; Structures moléculaires.
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1. Project Description

1.1. Research context

The discovery of new molecules and materials is of central importance with multiple technological and societal
implications. In this context, inverse molecular/material design concerns the prediction or the generation of stable
and synthesizable compounds which comply with desired properties and functionalities [1, 2]. In the chemical-
physical community, classical methods for inverse molecular design usually involve exploring the potential energy
surface (PES) of the molecular system to discover stable conformations, which is computationally prohibitive.
However, in the last decade, various machine learning techniques have been applied to this task [2], including
recurrent neural networks (RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), re-
inforcement learning (RL), or hybrid methods [1, 4], invertible neural networks [5], conditional generative neural
networks [6], or other kinds of autoencoder-based neural networks [7]. Within this approach, the generation of
compounds is mainly achieved via AI generative models for which the desired properties and functionalities are
provided as inputs in an encoded way.

Vibrational spectroscopy represents a major experimental technique for 3D-structure characterization. Thanks
to a one-to-one relationship between spectral fingerprints and 3D molecular structures [8–13], molecular design
processes can naturally be approached from the perspective of vibrational spectroscopy. In this context, the prob-
lem of going from a given structure to a corresponding spectrum has been addressed either via ab initio/force field
calculations [12, 14] or by means of machine learning techniques [15–17]. In the latter case, graph-theoretical
tools can be used to encode key structural descriptors of molecular systems, and deep neural networks are trained
to predict the spectrum characteristics from these encoded features [15, 16]. A more modern approach gets rid
of the encoding scheme and use graph neural networks (GNNs) directly on the molecular graphs (2D graphs) to
efficiently predict their vibrational spectra [17].

The inverse spectrum-to-structure mapping is more challenging, but also more impactful. Finding a unique
3D structure, or a small set of 2D graphs, responsible for a given spectrum inside the huge chemical space of
atom positions is intractable by brute-force methods. In machine learning, various methods targeted at discov-
ering molecules with desired functionalities have been investigated (variational autoencoders, generative neural
networks, reinforcement learning, recurrent neural networks, and hybrid approaches) [1, 18]. For instance,
a conditional generative neural network for the generation of 3D molecular structures with specified chemi-
cal and structural properties (e.g., motifs, gap values, low, intermediate and high relative atomic energy) has
been proposed [6]. Also, DeepMind has achieved a ground-breaking solution to the 50-year-old ‘protein-folding
problem’ with AlphaFold, a neural network-based model for protein 3D structure prediction from its amino acid
sequence [19]. In relation with our framework, a few studies have been pursued to predict protein secondary
structures from their vibrational spectra [13, 18].

Besides, in the late 80’s, the SMILES (Simplified Molecular Input Line Entry System) language has been in-
troduced as an efficient string representation of chemical structures, particularly well suited to computational
processing [20]. More recently, the SELFIES (Self-Referencing Embedded Strings) molecular string representa-
tion has been proposed to overcome lack of robustness of SMILES [21]. These considerations coupled with the
huge breakthroughs achieved by large language models (LLMs) (GPT4, ChatGPT, Llama, MISTRAL, etc.) [22] nat-
urally led to the development of LLMs specifically designed for the processing of chemical languages. In fact,
numerous LLMs have been pre-trained in a self-supervised way on massive datasets of SMILES and SELFIES. For
instance, ChemBERTa, MolBERT, SMILES-BERT, ChemBERTa-2 and ChemGPT have been pre-trained on datasets
of various sizes, using masked language modelling (MLM) and/or multi-task regression (MTR) tasks in order to
learn enriched molecular fingerprints from their string representations [23–25]. Afterwards, the models have
been fine-tuned on a multitude of classification and regression downstream tasks to evaluate the quality of the
fingerprints.

Chemistry-based LLMs show promising results on many of these downstream tasks. LLMs have also been
successfully applied to solve molecular graph specific problems by being paired with graph neural networks (text-
rich graph or text-paired graph approaches) [26].

To the best of our knowledge, an LLM-based approach addressing the bi-directional relationship between 2D
graphs and/or 3D molecular structures with vibrational spectra has not been undertaken.
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1.2. This PhD

In this project, we address the bi-directional relationship between molecular structures and their vibrational spec-
tra from the perspective of large language models (LLMs). Our goal is to develop adapted LLMs capable of pre-
dicting vibrational spectra from molecular SMILES/SELFIES (see Figure 1), and conversely, capable of predicting
or generating molecular SMILES/SELFIES from corresponding vibrational spectra (see Figure 2).

In a first stage, the direction of predicting vibrational spectra from SMILES/SELFIES will be considered (see
Figure 1, dashed box). The first step would be to fine-tune chemical-based LLMs (ChemBERTa, ChemGPT) on
datasets of smiles and spectra already implemented in the literature and using customized loss functions previ-
ously described [16, 17]. In a second step, we aim to improve the spectra predictions with enriched LLMs. To that
end, additional molecular information will be provided to the LLMs (for instance, gas/liquid phase, temperature,
concentration, etc.) – either in a prompted way or in a numerical way. The accuracy of the predicted spectra will
be compared to the spectra reported in the literature.
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Figure 1: Prediction of the vibrational spectrum of a molecular compound from its SMILES/SELFIES representation, using an
LLM (dashed box). The initial step represented by the grey arrow can be achieved using python libraries.

In a second stage, the inverse problem of predicting or generating molecular SMILES/SELFIES from vibra-
tional spectra will be considered (see Figure 2, dashed box). This case is more complex, since the chemical-based
LLMs are designed to take SMILES/SELFIES as input as opposed to the required vibrational spectra. Hence, the
LLMs will be adapted to handle these alternative inputs (red arrow in Figure 2), which represents a challenge.
In contrast, the output capabilities of the LLMs (orange arrow in Figure 2) poses no particular problem, since
LLMs are designed to generate SMILES/SELFIES, as requested. Architecturally-wise, the models could even be
coupled with GNNs in a text-rich graph or text-paired graph mode for better predictive capabilities [26]. The
adapted LLMs will possibly need to be pre-trained in this new framework, before being fine-tuned on our dataset
of spectra and smiles.
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Figure 2: Prediction/generation of a molecular SMILES/SELFIES from its vibrational spectrum with an LLM (dashed box).

Our interdisciplinary project might bring several added values to the fields machine learning and theoretical
chemistry. In machine learning, this project fits within the context of graph prediction and inverse problems in
general. In theoretical chemistry, it contributes to the important research efforts on inverse molecular design.

1.3. Work plan

The project is divided into the following work packages:
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WP1 Knowledge acquisition (3–6 months). This work package concerns the bi-disciplinary knowledge ac-
quisition: LLMs, LLMs for chemistry, GNNs and inverse problems, on the one hand, as well as molecular
structures and graphs, vibrational spectroscopy and inverse molecular design, on the other hand.

WP2 Stage 1: SMILES/SELFIES-to-spectra (6–9 months). This work package concerns the implementation,
adaptation, and fine-tuning of ChemBERTa, ChemGPT, or related models on datasets of smiles and spectra.
The obtained models will predict molecular spectra from given SMILES/SELFIES.

WP3 Stage 2: spectra-to-SMILES/SELFIES (18–21 months). This stage constitues the challenge of the PhD.
This work package concerns the implementation, enrichment, and fine-tuning of spectro-adapted LLMs on
datasets of spectra and smiles. The obtained models will predict SMILES/SELFIES from given molecular
spectra. The LLMs will require suitable architectural adaptations and pre-training adjustments to fit our
goals.

WP4 Manuscript (6 months). This work package concerns the writing of the PhD manuscript as well as related
papers.

2. Collaboration and Supervision Details

2.1. Co-supervision

The PhD will be co-supervised by Prof. Jérémie Cabessa (DAVID, UVSQ - Paris-Saclay) and Prof. Marie-Pierre
Gaigeot (LAMBE, UEVE - Paris-Saclay).

Jérémie Cabessa, is a Professor in computer science at the laboratoire DAVID, Université Versailles Saint-
Quentin-en-Yvelines – Paris-Saclay. His research activities mainly focus on artificial neural networks from both a
theoretical and an applied perspective, which includes neural computation, computational complexity of neural
networks, deep learning, and natural language processing (NLP), and bio-inspired computing.

Marie-Pierre Gaigeot is a Professor in Physics and Chemistry at LAMBE - UMR8587, Université d’Evry Val
d’Essonne – Paris Saclay and senior member of the IUF. Her domains of expertise focus on theoretical and compu-
tational chemistry and theoretical vibrational spectroscopy, and involve, among others, molecular dynamics simu-
lations and direct modeling of vibrational anharmonic signals. Prof. Gaigeot has already been involved in inter-
disciplinary projects at the interface of chemistry, graph theory and artificial intelligence (AI), in particular with
Prof. Dominique Barth from DAVID, UVSQ - Paris-Saclay.

2.2. Collaboration

The collaboration between Prof. Cabessa and Prof. Gaigeot represents an ideal fit and clear added-value to the
proposed project, since their respective research expertises cover the two main aspects of the project: (1) deep
learning, neural networks, large language models (LLMs) and graph neural networks (GNNs); and (2) theoretical
chemistry and vibrational spectroscopy, molecular structure identification, modeling of vibrational spectroscopies.

More specifically, the contributions of the co-supervisors can be described as follows: The role of Prof. Cabessa
concerns the supervision of the computer scientist part of the project. This includes the analysis and formal-
ization of the tasks as well as the development, implementation and pre-training/fine-tuning of the LLMs. The
role of Prof. Gaigeot consists in supervising the chemo-informatics component of the project. This involves the
identification of relevant molecular spectral and structural features necessary to the achievement of good learn-
ing performance, the conception of all processes with respect to their chemical aspects, the participation in the
elaboration and implementation of the models, as well as the creation of the molecular datasets.

3. Evaluation criteria

In terms of publications, the outcome of the project is estimated to 2 or 3 conference papers in NN/AI/ML good or
top-tier conferences (IJCNN, ECAI, IJCAI, AAAI, NIPS) as well as 1 or 2 journal papers in a good bio-informatics or
chemistry journal (PloS Computational Biology, JACS, etc.). More generally, a solution to WP3 would constitute a
significant advance in theoretical chemistry regarding the impactful domain of inverse molecular/material design.
It would also enable a leap in the field of inverse problems in machine learning.

4. Required skills

The required skills for the cadidate are: strong background in ML and neural networks; very good programming
skills, preferably in Python; experience with neural network libraries like PyTorch or Keras is strongly recom-
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mended; prior knowledge in chemo-/bio-informatics would be a plus.

5. Implementation details

The candidate will be hosted by the laboratoire DAVID at UVSQ-Paris Saclay: https://www.david.uvsq.fr/. An
office space, a computer and an access to GPU computing resources will be granted. Funding to attend summer
schools, conferences or workshops is available to the candidate. The monthly salary is in line with the official
salary scale from the public sector. Salary can be increased upon additional teaching duties.

6. References
[1] Benjamin Sanchez-Lengeling and Alán Aspuru-Guzik. Inverse molecular design using machine learning: Generative models for matter

engineering. Science, 361(6400):360–365, 2018.
[2] Alex Zunger. Inverse design in search of materials with target functionalities. Nature Reviews Chemistry, 2(4):0121, 2018.
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