<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<div class="moz-text-html" lang="x-unicode">
<p>[Apologies if you receive multiple copies of this CFP] <br>
</p>
<div class="moz-forward-container">
<p> </p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
mso-outline-level:1"><b><span style="font-size: 14pt;"
lang="EN-US">Call for Papers: <span style="color:#0070C0">Emerging
Trends and Applications of Deep Learning for Biomedical
Data Analysis </span></span></b></p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span
style="color:blue;mso-ansi-language:EN-US" lang="EN-US"><a
href="https://www.springer.com/journal/11042/updates/24678968"
class="moz-txt-link-freetext">https://www.springer.com/journal/11042/updates/24678968</a></span></p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b>Summary
and Scope</b></p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Nowadays,
Deep learning (DL) becomes an attractive research topic for
many researchers from academia and industry communities.
Indeed, DL algorithms have demonstrated their ability to train
learning models for large-volume data as well as their
performances compared to conventional machine learning
algorithms. The DL approaches were studied and applied to
resolve several complex problems in various research domains,
such as computer vision, biometrics, brain-computer
interfaces, robotics, and other fields. Several architectures
of DL (e.g., supervised, unsupervised, reinforcement, and
beyond) have been proposed in the literature as solutions for
various research problems in data analysis related to
detection, classification, recognition, prediction,
decision-making, etc.<br>
<br>
The special issue aims to solicit original research work
covering novel algorithms, innovative methods, and meaningful
applications based on the DL that can potentially lead to
significant advances in biomedical data analysis.</p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">The
main topics include, but are not limited to, the following:<br>
<br>
• DL for biomedical signal analysis and processing<br>
• DL for medical image analysis and processing<br>
• DL for diseases detection and diagnosis<br>
• DL for pandemics detection and forecasting<br>
• DL for biometrics<br>
• DL in biomedical engineering<br>
• DL for health informatics<br>
• DL for brain-computer interfaces<br>
• DL for neural rehabilitation engineering<br>
• Related applications</p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b><br>
</b></p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b>Important
Dates:</b><br>
Submission deadline: August 31, 2023<br>
Reviewing deadline: October 15, 2023<br>
Author revision deadline: November 15, 2023<br>
Final notification date: December 15, 2023</p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b><br>
</b></p>
<p class="MsoNormal"
style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b>Guest
editors</b><br>
Prof. Larbi Boubchir (Lead GE) - University of Paris 8, France<br>
Email: <a class="moz-txt-link-abbreviated
moz-txt-link-freetext"
href="mailto:Larbi.boubchir@univ-paris8.fr">Larbi.boubchir@univ-paris8.fr</a><br>
<br>
Prof. Elhadj Benkhelifa - Staffordshire University, UK<br>
Email: <a class="moz-txt-link-abbreviated
moz-txt-link-freetext" href="mailto:Benkhelifa@staffs.ac.uk">Benkhelifa@staffs.ac.uk</a><br>
<br>
Prof. Jaime Lloret - Universitat Politecnica de Valencia,
Spain<br>
Email: <a class="moz-txt-link-abbreviated
moz-txt-link-freetext" href="mailto:jlloret@dcom.upv.es">jlloret@dcom.upv.es</a><br>
<br>
Prof. Boubaker Daachi - University of Paris 8, France<br>
Email: <a class="moz-txt-link-abbreviated
moz-txt-link-freetext"
href="mailto:boubaker.daachi@univ-paris8.fr">boubaker.daachi@univ-paris8.fr</a><br>
<br>
<b>Submission Guidelines:</b><br>
Authors should prepare their manuscript according to the
Instructions for Authors available from the Multimedia Tools
and Applications <a
href="https://www.springer.com/journal/11042/"
target="_blank"><span style="mso-ansi-language:EN-US"
lang="EN-US">website</span></a>. Authors should submit
through the online submission site at <a
href="https://www.editorialmanager.com/mtap/default.aspx"
target="_blank"><span style="mso-ansi-language:EN-US"
lang="EN-US">https://www.editorialmanager.com/mtap/default.aspx</span></a>
and select “SI 1239 - Emerging Trends and Applications of Deep
Learning for Biomedical Data” when they reach the “Article
Type” step in the submission process. Submitted papers should
present original, unpublished work, relevant to one of the
topics of the special issue. All submitted papers will be
evaluated on the basis of relevance, significance of
contribution, technical quality, scholarship, and quality of
presentation, by at least three independent reviewers. It is
the policy of the journal that no submission, or substantially
overlapping submission, be published or be under review at
another journal or conference at any time during the review
process.</p>
</div>
</div>
</body>
</html>