<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<style type="text/css" style="display:none;"> P {margin-top:0;margin-bottom:0;} </style>
</head>
<body dir="ltr">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0 elementToProof ContentPasted1">See <a href="https://correlativelearning.ai/" id="LPNoLPOWALinkPreview">https://correlativelearning.ai/</a> for details.</span></span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0 elementToProof ContentPasted1"><br>
</span></span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0 elementToProof ContentPasted1">Workshop Topics</span></span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0 elementToProof ContentPasted1">-----------------------</span></span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0 elementToProof ContentPasted1"><br>
</span></span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0 elementToProof ContentPasted1 ContentPasted2">Despite gradient descent being the dominant approach to parameter adaptation in neural networks, correlative
learning is often considered to be more biologically plausible, easier to implement in hardware and an interesting alternative to the gradient-based methods. Our workshop is a venue for the discussion of correlation-based learning methods, their applications,
recent developments and future directions. This workshop will help build a community of researchers interested in discussing common problems and elucidating the most important questions facing these types of approaches.<br>
</span></span></div>
<div class="_Entity _EType_OWALinkPreview _EId_OWALinkPreview _EReadonly_1"></div>
<br>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">Call for Participation</span></span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="margin:0px"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">---------------------------</span></span></div>
<div style="font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px"><br class="ContentPasted0">
</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">Correlative Learning (CL) uses product terms, rather than derivatives, to adapt the parameters
of learning systems. Though CL has had significant impact on neuroscience, signal processing, and control, the Machine Learning (ML) community still predominantly uses derivative-based approaches. Several CL approaches were introduced in the 1990s and shown
to be effective in Neural Networks with a few layers and a moderate number of parameters. One of the best known examples of CL is Hebbian learning. Some others, like Alopex are applied in a stochastic framework. In this workshop we plan to thoroughly investigate
the effectiveness of CL for current Deep Learning (DL) systems; this could also enhance the effectiveness of other methods.</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><br class="ContentPasted0">
</div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">This workshop seeks to bring together practitioners of CL from Neuroscience, Psychology, Computer
Science, Physics, Mathematics, and other fields. Discussion of recent results across a diverse range of applications can create an active community of CL researchers and this can lead to dissemination of CL approaches more broadly to the ML community. We plan
to devote about half of the workshop to lively discussions, based on a set of questions, like: “How can we get better approximate gradient information through correlations?”, “What are the implementational advantages of CL in hardware and software?”, “How
can we scale CL to deeper, wider networks?”, “Can CL benefit from adaptive momentum in the ADAM and related algorithms?”, “How can biological CL models inform ML?”. Also, an entire session of the workshop will be devoted to graduate students and post-docs,
where presentations and discussions about their nascent ideas can help create the next generation CL community.</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><br class="ContentPasted0">
</div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">We invite anyone interested in Correlative Learning to join us at IJCNN 2023 either in person
or virtually.</span></div>
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><br class="ContentPasted0">
</div>
</div>
<div style="font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">Submission Details</span></span></div>
<div style="font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;"><span style="font-family:Arial, Helvetica, sans-serif;margin:0px" class="ContentPasted0">--------------------------</span></span></div>
<div style="font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="font-family: Arial, Helvetica, sans-serif; margin: 0px;" class="ContentPasted0"><br>
</span></div>
<div style="font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<span style="font-family: Arial, Helvetica, sans-serif; margin: 0px;" class="ContentPasted0">In order to maximise time for discussion and encourage the development of the field, we have scheduled five colloquia and six early career researcher presentations
(open to graduate students and those who were awarded a PhD within the last 10 years). Colloquia and presentations will be selected by the program committee. Criteria for selection are: appropriateness to the workshop and merit. To submit a colloquium proposal
send (1) your name, (2) a brief biography, (3) a title, (4) an abstract of 300 words or less (not-including references), (5) for early career a statement regarding your qualification for the category signed by a graduate advisor, to abstract@correlativelearning.ai
by no later than the end of day April 16th (AOE).</span></div>
<div style="font-size: 12pt; color: rgb(0, 0, 0); background-color: rgb(255, 255, 255);" class="elementToProof">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; margin: 0px;">
<div style="font-size: 12pt; margin: 0px; color: rgb(0, 0, 0);"><br style="font-size: 16px; background-color: rgb(255, 255, 255);" class="ContentPasted0">
</div>
</div>
<br>
</div>
<div class="elementToProof">
<div style="font-family: Calibri, Arial, Helvetica, sans-serif; font-size: 12pt; color: rgb(0, 0, 0);">
<br>
</div>
<div id="Signature">
<div>
<div></div>
<div id="divtagdefaultwrapper" dir="ltr" style="font-size: 12pt; font-family: Calibri, Helvetica, sans-serif; color: rgb(0, 0, 0);">
<p style="margin-top:0px; margin-bottom:0px; margin-top:0; margin-bottom:0"><br>
</p>
<p style="margin-top:0px; margin-bottom:0px; margin-top:0; margin-bottom:0">Chuck Anderson</p>
<p style="margin-top:0px; margin-bottom:0px; margin-top:0; margin-bottom:0">Department of Computer Science</p>
<p style="margin-top:0px; margin-bottom:0px; margin-top:0; margin-bottom:0">Colorado State University</p>
<p style="margin-top:0px; margin-bottom:0px; margin-top:0; margin-bottom:0"><a href="http://www.cs.colostate.edu/~anderson" class="OWAAutoLink">http://www.cs.colostate.edu/~anderson</a></p>
</div>
</div>
</div>
</div>
</body>
</html>