<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>[Apologies if you receive multiple copies of this CFP] <br>
    </p>
    <div class="moz-forward-container">
      <p> </p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;
        mso-outline-level:1"><b><span style="font-size: 14pt;"
            lang="EN-US">Call for Papers: <span style="color:#0070C0">Emerging
              Trends and Applications of Deep Learning for Biomedical
              Data Analysis </span></span></b></p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span
          style="color:blue;mso-ansi-language:EN-US" lang="EN-US"><a
            href="https://www.springer.com/journal/11042/updates/24678968"
            class="moz-txt-link-freetext" moz-do-not-send="true">https://www.springer.com/journal/11042/updates/24678968</a></span></p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b>Summary
          and Scope</b></p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Nowadays,
        Deep learning (DL) becomes an attractive research topic for many
        researchers from academia and industry communities. Indeed, DL
        algorithms have demonstrated their ability to train learning
        models for large-volume data as well as their performances
        compared to conventional machine learning algorithms. The DL
        approaches were studied and applied to resolve several complex
        problems in various research domains, such as computer vision,
        biometrics, brain-computer interfaces, robotics, and other
        fields. Several architectures of DL (e.g., supervised,
        unsupervised, reinforcement, and beyond) have been proposed in
        the literature as solutions for various research problems in
        data analysis related to detection, classification, recognition,
        prediction, decision-making, etc.<br>
        <br>
        The special issue aims to solicit original research work
        covering novel algorithms, innovative methods, and meaningful
        applications based on the DL that can potentially lead to
        significant advances in biomedical data analysis.</p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">The
        main topics include, but are not limited to, the following:<br>
        <br>
        • DL for biomedical signal analysis and processing<br>
        • DL for medical image analysis and processing<br>
        • DL for diseases detection and diagnosis<br>
        • DL for pandemics detection and forecasting<br>
        • DL for biometrics<br>
        • DL in biomedical engineering<br>
        • DL for health informatics<br>
        • DL for brain-computer interfaces<br>
        • DL for neural rehabilitation engineering<br>
        • Related applications</p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b><br>
        </b></p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b>Important
          Dates:</b><br>
        Submission deadline: August 31, 2023<br>
        Reviewing deadline: October 15, 2023<br>
        Author revision deadline: November 15, 2023<br>
        Final notification date: December 15, 2023</p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b><br>
        </b></p>
      <p class="MsoNormal"
        style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b>Guest
          editors</b><br>
        Prof. Larbi Boubchir (Lead GE) - University of Paris 8, France<br>
        Email: <a class="moz-txt-link-abbreviated
          moz-txt-link-freetext"
          href="mailto:Larbi.boubchir@univ-paris8.fr"
          moz-do-not-send="true">Larbi.boubchir@univ-paris8.fr</a><br>
        <br>
        Prof. Elhadj Benkhelifa - Staffordshire University, UK<br>
        Email: <a class="moz-txt-link-abbreviated
          moz-txt-link-freetext" href="mailto:Benkhelifa@staffs.ac.uk"
          moz-do-not-send="true">Benkhelifa@staffs.ac.uk</a><br>
        <br>
        Prof. Jaime Lloret - Universitat Politecnica de Valencia, Spain<br>
        Email: <a class="moz-txt-link-abbreviated
          moz-txt-link-freetext" href="mailto:jlloret@dcom.upv.es"
          moz-do-not-send="true">jlloret@dcom.upv.es</a><br>
        <br>
        Prof. Boubaker Daachi - University of Paris 8, France<br>
        Email: <a class="moz-txt-link-abbreviated
          moz-txt-link-freetext"
          href="mailto:boubaker.daachi@univ-paris8.fr"
          moz-do-not-send="true">boubaker.daachi@univ-paris8.fr</a><br>
        <br>
        <b>Submission Guidelines:</b><br>
        Authors should prepare their manuscript according to the
        Instructions for Authors available from the Multimedia Tools and
        Applications <a href="https://www.springer.com/journal/11042/"
          target="_blank" moz-do-not-send="true"><span
            style="mso-ansi-language:EN-US" lang="EN-US">website</span></a>.
        Authors should submit through the online submission site at <a
          href="https://www.editorialmanager.com/mtap/default.aspx"
          target="_blank" moz-do-not-send="true"><span
            style="mso-ansi-language:EN-US" lang="EN-US">https://www.editorialmanager.com/mtap/default.aspx</span></a>
        and select “SI 1239 - Emerging Trends and Applications of Deep
        Learning for Biomedical Data” when they reach the “Article Type”
        step in the submission process. Submitted papers should present
        original, unpublished work, relevant to one of the topics of the
        special issue. All submitted papers will be evaluated on the
        basis of relevance, significance of contribution, technical
        quality, scholarship, and quality of presentation, by at least
        three independent reviewers. It is the policy of the journal
        that no submission, or substantially overlapping submission, be
        published or be under review at another journal or conference at
        any time during the review process.</p>
    </div>
  </body>
</html>