<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div dir="ltr"></div><div dir="ltr">If a broken clock were correct twice a day, would we give it credit for patches of understanding of time? If n-gram model produced a sequence that was 80% grammatical, would we attribute to an underlying understanding of grammar?</div><div dir="ltr"><br><blockquote type="cite">On Mar 9, 2023, at 12:35, Dietterich, Thomas <tgd@oregonstate.edu> wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr">
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style>@font-face { font-family: "Cambria Math"; }
@font-face { font-family: Calibri; }
@font-face { font-family: "Lucida Console"; }
p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0in 0in 0.0001pt; font-size: 11pt; font-family: Calibri, sans-serif; }
a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }
a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }
p.msonormal0, li.msonormal0, div.msonormal0 { margin-right: 0in; margin-left: 0in; font-size: 11pt; font-family: Calibri, sans-serif; }
span.EmailStyle20 { font-family: Calibri, sans-serif; color: windowtext; }
.MsoChpDefault { font-size: 10pt; }
@page WordSection1 { size: 8.5in 11in; margin: 1in; }
div.WordSection1 { page: WordSection1; }</style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
<div class="WordSection1">
<p class="MsoNormal">ChatGPT’s errors reveal that its “understanding” of the world is not systematic but rather consists of patches of competence separated by regions of incompetence and incoherence. ChatCPT would be much stronger if it could fill in the gaps
between those patches by appealing to general causal models. This raises two questions: (a) how could a system learn such causal models and (b) how could we test a system to determine whether it had succeeded.
<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Researchers in the area of symbolic regression and causal discovery have an answer to (a): Learn a symbolic (e.g., DAG or differential equation) model. If we seek a fully connectionist account, how can we encourage/enforce systematicity
in the knowledge acquired through deep learning? Regarding (b), does anyone have pointers to work on testing whether a connectionist system has acquired a systematic understanding of a causal relationship? This must go beyond testing (x,y) points, perhaps
by verifying (Lipschitz) continuity?<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">--Tom<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Lucida Console"">Thomas G. Dietterich, Distinguished Professor Voice: 541-737-5559<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Lucida Console"">School of Electrical Engineering FAX: 541-737-1300<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Lucida Console""> and Computer Science URL: eecs.oregonstate.edu/~tgd<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Lucida Console"">US Mail: 1148 Kelley Engineering Center
<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Lucida Console"">Office: 2067 Kelley Engineering Center<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:10.0pt;font-family:"Lucida Console"">Oregon State Univ., Corvallis, OR 97331-5501<o:p></o:p></span></p>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><b>From:</b> Connectionists <connectionists-bounces@mailman.srv.cs.cmu.edu>
<b>On Behalf Of </b>Stefan C Kremer<br>
<b>Sent:</b> Wednesday, March 8, 2023 17:44<br>
<b>To:</b> Terry Sejnowski <terry@salk.edu><br>
<b>Cc:</b> Connectionists List <connectionists@cs.cmu.edu><br>
<b>Subject:</b> Re: Connectionists: Chomsky's apple<o:p></o:p></p>
</div>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<p><span style="color:#D73F09">[This email originated from outside of OSU. Use caution with links and attachments.]</span><o:p></o:p></p>
<div>
<p class="MsoNormal">One of the criticisms against John Searle’s argument (<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__nam04.safelinks.protection.outlook.com_-3Furl-3Dhttps-253A-252F-252Fen.wikipedia.org-252Fwiki-252FChinese-5Froom-26data-3D05-257C01-257Ctgd-2540oregonstate.edu-257C784658ebd66d4fa3f07308db2071adfb-257Cce6d05e13c5e4d6287a84c4a2713c113-257C0-257C0-257C638139444863338994-257CUnknown-257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0-253D-257C3000-257C-257C-257C-26sdata-3Ddah-252FU3oilsuzZ-252BzWZOtJVUwodjpPRjsjC3pkyPU9Ih4-253D-26reserved-3D0&d=DwMFAg&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yK_yt1sK2XBZMqr3ksA5-lkUklkqXRZwOWJ93qCtcIlsYYcZ6XGpQzwZ0E1hktho&s=CApCdHIaJGI7yA8LX-bohuvVGKqfd_4J54uUcoCMrcA&e=">https://en.wikipedia.org/wiki/Chinese_room</a>)
has always been that it wouldn’t be possible to construct a book comprehensive enough to answer all the queries, or that it would take too long to produce an output. Chat GPT shows that we have at least approached that limitation (perhaps not truly overcome
it…yet). <o:p></o:p></p>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">The question posed by Searle (and answered with a “yes” by Chomsky in his thinking about counterfactuals, causal explanation, and thinking) is: is there a difference between understanding and simulated understanding?<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">I don’t know how we could ever answer this question (an to me that’s the important point), but it seems that Searle’s thought experiment becomes more relevant, now that a feasible implementation can be constructed, than when it was originally
proposed.<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<div>
<p class="MsoNormal">Stefan<o:p></o:p></p>
</div>
<div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal"><br>
<br>
<o:p></o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt">
<div>
<p class="MsoNormal">On Mar 8, 2023, at 12:25 PM, Terry Sejnowski <<a href="mailto:terry@salk.edu">terry@salk.edu</a>> wrote:<o:p></o:p></p>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<div>
<p class="MsoNormal">CAUTION: This email originated from outside of the University of Guelph. Do not click links or open attachments unless you recognize the sender and know the content is safe. If in doubt, forward suspicious emails to
<a href="mailto:IThelp@uoguelph.ca">IThelp@uoguelph.ca</a><br>
<br>
<br>
I have always been impressed with Chomsky's ability to use plausible<br>
arguments to make his case even when they were fallacious.<br>
<br>
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.nytimes.com_2023_03_08_opinion_noam-2Dchomsky-2Dchatgpt-2Dai.html-23commentsContainer&d=DwMFAg&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yK_yt1sK2XBZMqr3ksA5-lkUklkqXRZwOWJ93qCtcIlsYYcZ6XGpQzwZ0E1hktho&s=11LZuUgL4hbzFVB0SXvkYdIxw3Bfx_4mcF9_kQPwq04&e=">https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html#commentsContainer</a><br>
<br>
"Here’s an example. Suppose you are holding an apple in your hand. Now you let the apple go. You observe the result and say, “The apple falls.” That is a description. A prediction might have been the statement “The apple will fall if I open my hand.” Both are
valuable, and both can be correct. But an explanation is something more: It includes not only descriptions and predictions but also counterfactual conjectures like “Any such object would fall,” plus the additional clause “because of the force of gravity” or
“because of the curvature of space-time” or whatever. That is a causal explanation: “The apple would not have fallen but for the force of gravity.” That is thinking."<br>
<br>
His apple example sounded convincing, so I tested GPT on it:<br>
<br>
Me: If I hold an apple in my hand and let it go what will happen?<br>
<br>
GPT: The apple will fall to the ground due to the force of gravity.<br>
<br>
Me: What about any such object?<br>
<br>
GPT: Any object released from a person's hand will fall to the ground due to the force of gravity.<br>
<br>
Me: What would happen if there wasn't a force of gravity?<br>
<br>
GPT: If there were no force of gravity, objects would not be able to stay on the ground and would float away in all directions<br>
<br>
Chomsky defined thinking by the correct answers to these questions. <br>
<br>
Alas, the tide has turned.<br>
<br>
Terry<br>
<br>
-----<o:p></o:p></p>
</div>
</div>
</blockquote>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
</div>
</div>
</div></blockquote></body></html>