<html xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
font-size:10.0pt;
font-family:"Calibri",sans-serif;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style>
</head>
<body lang="EN-AU" link="#0563C1" vlink="#954F72" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Sorry for cross postings.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">==== IEEE JBHI Journal Special Issue on "Trustworthy and Collaborative AI for Personalised Healthcare Through Edge-of-Things" ====<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Guest Editor: Zhao Ren, Björn W. Schuller, Björn M. Eskofier, Tam Nguyen, Wolfgang Nejdl<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">https://www.embs.org/jbhi/special-issues/trustworthy-and-collaborative-ai-for-personalised-healthcare-through-edge-of-things/<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">----- Aims and Scope -----<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">The evolution of artificial intelligence (AI) has contributed to advances in personalised healthcare applications, from diagnosis to therapies. From the first generation of healthcare
technologies for handling structured data to the current mainstream healthcare technologies (represented by Big Data platforms) for processing unstructured data, the history of AI in healthcare is closely related to the changes in the types and volumes of
data we need to deal with. The next generation of healthcare technologies will be designed to deal with Edge-of-Things data, represented by a massive amount of streaming data generated from Internet-of-Things frameworks, Cloud systems, and Edge computing platforms.
Benefiting from the encouraging results of AI on Big Data, AI for personalised healthcare through Edge-of-Things will pave the way for intelligent health-related applications on edge devices, such as smart sensors and wearable devices. For example, health
data (e.g., images, audio recordings, and biosignals) can be processed by interactive virtual agents for health status reports and suggestions to individuals. Additionally, health data can also be transferred to clinicians for diagnosing diseases, making personalised
treatment plans, and monitoring the health status of individuals. However, the variety and complexity of these data require the provision of new AI models and technologies able to process and analyse them in a trustworthy and collaborative way. In this context,
the characteristics of trust and collaboration in AI systems are highly valuable for applying AI to personalised healthcare services. Trustworthy and collaborative AI is designed to encourage transparent, reliable, and unbiased AI systems and ensure their
adequacy to tackle predictive and prescriptive healthcare problems. In order to be trustworthy and collaborative, such AI systems need to be able to understand what’s wrong, figure out how to overcome the resulting problems, involve human intelligence in the
discovery process, and then take what they have learnt to overcome those challenges for the future.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">This special issue’s intended focus is advancements in all state-of-the-art trustworthy and collaborative AI techniques for personalised healthcare. In this trending area of personalised
healthcare, the special issue is expected to promote related research studies and establish a new era of healthcare systems with AI. The special issue will highlight, but not be limited to the following topics:
<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Trustworthy AI models for health, medicine, biology, and biomedical applications<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- AI-driven Edge of Things infrastructure for healthcare<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Discussion of the trade-off between explainability and performance of machine learning<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Development of model-specific or model-agnostic approaches for explaining machine learning models<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Generation and detection of adversarial attacks for safety in AI systems for personalised healthcare<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Federated Learning for data privacy in AI systems for personalised healthcare<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Fairness and bias issues in AI systems for personalised healthcare<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Designing integrating virtual agents for healthcare usages<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">- Collaborative robots for healthcare usages<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">----- Important Dates -----<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Deadline for Submission: 30 Sep, 2022 (possible extension to 31 Oct, 2022)<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">First Reviews Due: 08 Nov, 2022<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Revised Manuscript Due: 08 Dec, 2022<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Final Decision: 20 Jan, 2023<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">----- Submission Instructions -----<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">All manuscripts are to be submitted through ScholarOne https://mc.manuscriptcentral.com/jbhi-embs. When submitting your manuscript please select the article type 'Trustworthy and
collaborative AI for personalised healthcare through edge-of-things (S1)'.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Please submit your manuscript before the submission deadline. Please ensure you read the Author Guide before writing your manuscript on the Journal's homepage.<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US"> <o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">----- Guest Editors -----<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Zhao Ren, Leibniz Universität Hannover, Germany, zren@l3s.de<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Björn W. Schuller, Imperial College London, UK & Universität Augsburg, Germany, schuller@ieee.org<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Björn M. Eskofier, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany, bjoern.eskofier@fau.de<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Tam Nguyen, Griffith University, Australia, t.nguyen19@griffith.edu.au<o:p></o:p></span></p>
<p class="MsoNormal"><span style="font-size:11.0pt;mso-fareast-language:EN-US">Wolfgang Nejdl, Leibniz Universität Hannover, Germany, nejdl@l3s.de<o:p></o:p></span></p>
</div>
</body>
</html>