<html><body><div style="font-family: arial, helvetica, sans-serif; font-size: 12pt; color: #000000"><div>Dear all,</div><div><br data-mce-bogus="1"></div><div>We are looking for a research engineer or post-doc to work on <em>audiovisual speech enhancement</em> in the Multispeech team at Inria, France. More details can be found below or in the attached flyer.</div><div><br data-mce-bogus="1"></div><div>We appreciate it if you could forward this advertisement to interested candidates.</div><div><br data-mce-bogus="1"></div><div>Best regards,</div><div><span style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">--</span><br style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">Mostafa Sadeghi,</span><br style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">Researcher, Multispeech Team,</span><br style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;" data-mce-style="color: #000000; font-family: arial, helvetica, sans-serif; font-size: 16px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; background-color: #ffffff; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial; display: inline !important; float: none;">Inria, Nancy - Grand Est, France.</span><div style="clear: both;" data-mce-style="clear: both;"><br></div><div style="clear: both;" data-mce-style="clear: both;">****************************************************************************************</div></div><div><br data-mce-bogus="1"></div><div><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">Context: </strong>The <a href="https://team.inria.fr/multispeech" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="https://team.inria.fr/multispeech" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">Multispeech team</a>, at Inria Nancy, France, seeks a qualified candidate to work on <em style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><u style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;">signal processing and machine learning techniques for robust audiovisual speech enhancement</u></em><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">. </strong>The candidate will be working under the co-supervision of <a href="https://msaadeghii.github.io/" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="https://msaadeghii.github.io/" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">Mostafa Sadeghi</a> (researcher, <a href="https://team.inria.fr/multispeech" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="https://team.inria.fr/multispeech" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">Multispeech team</a>), <a href="http://xavirema.eu/" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="http://xavirema.eu/" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">Xavier Alameda-Pineda</a> (researcher and team leader of <a href="https://team.inria.fr/robotlearn/" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="https://team.inria.fr/robotlearn/" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">RobotLearn team</a>), and <a href="https://team.inria.fr/robotlearn/team-members/radu-patrice-horaud/" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="https://team.inria.fr/robotlearn/team-members/radu-patrice-horaud/" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">Radu Horaud</a> (senior researcher, <a href="https://team.inria.fr/robotlearn/" style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;" data-mce-href="https://team.inria.fr/robotlearn/" data-mce-style="box-sizing: border-box; background: 0px 0px; color: #428bca; text-decoration: none; cursor: pointer; transition: all 0.15s ease-in-out 0s;">RobotLearn team</a>).</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><br data-mce-bogus="1"></span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">Starting date & duration: </strong>October 2022 (flexible), for a duration of one year (renewable depending on funding availability and performance).</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><br data-mce-bogus="1"></span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">Background: </strong>Audio-visual speech enhancement (AVSE) refers to the task of improving the intelligibility and quality of a noisy speech signal utilizing the complementary information of visual modality (lip movements of the speaker) [1], which could be very helpful in highly noisy environments. Recently, and due to the great success and progress of deep neural network (DNN) architectures, AVSE has been extensively revisited [1]. Existing DNN-based AVSE methods are categorized into <em style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;">supervised</em> and <em style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;">unsupervised</em> approaches. In the former category, a DNN is trained on a large audiovisual corpus, e.g., AVSpeech [2], with diverse enough noise instances, to directly map the noisy speech signal and the associated video frames of the speaker into a clean estimate of the target speech signal. The trained models are usually very complex and contain millions of parameters. The unsupervised methods [3] follow a statistical modeling-based approach combined with the expressive power of DNNs, which involves learning the prior distribution of clean speech using deep generative models, e.g., variational autoencoders (VAEs) [4], on clean corpora such as TCD-TIMIT [5], and estimating clean speech signal in a probabilistic way. As there is no training on noise, the models are much lighter than those of supervised methods. Furthermore, the unsupervised methods have potentially better generalization performance and robustness to visual noise thanks to their probabilistic nature [6-8]. Nevertheless, these methods are very recent and significantly less explored compared to the supervised approaches.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><br data-mce-bogus="1"></span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">Project description: </strong>In this project, we plan to devise a robust and efficient AVSE framework by thoroughly investigating the coupling between the recently proposed deep learning architectures for speech enhancement, both supervised and unsupervised, benefiting from the best of both worlds, along with the state-of-the-art generative modeling approaches. This will include, e.g., the use of dynamical VAEs [9], temporal convolutional networks (TCNs) [10], and attention-based strategies [11,12]. The main objectives of this project are summarized as follows:</span></p><ol style="box-sizing: border-box; margin-top: 0px; margin-bottom: 10px; padding-left: 16px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin-top: 0px; margin-bottom: 10px; padding-left: 16px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">Developing a neural architecture that identifies reliable (either frontal or non-frontal) and unreliable (occluded, extreme poses, missing) lip images by providing a normalized score at the output;</span></li><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">Developing deep generative models that efficiently exploit the sequential nature of data;</span></li><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">Integrating the developed visual reliability analysis network within the deep generative model that accordingly decides whether to utilize the visual data or not. This will provide a flexible and robust audiovisual fusion and enhancement framework.</span></li></ol><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">Requirements & skills: </strong>The preferred profile is described below.</span></p><ul style="box-sizing: border-box; margin-top: 0px; margin-bottom: 10px; padding-left: 16px; list-style: disc; margin-left: 15px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin-top: 0px; margin-bottom: 10px; padding-left: 16px; list-style: disc; margin-left: 15px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">M.Sc. or Ph.D. degree in speech/audio processing, computer vision, machine learning, or in a related field,</span></li><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">Ability to work independently as well as in a team,</span></li><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">Solid programming skills (Python, PyTorch), and deep learning knowledge,</span></li><li style="box-sizing: border-box;" data-mce-style="box-sizing: border-box;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">Good level of written and spoken English.</span></li></ul><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">How to apply: </strong>Interested candidates are encouraged to contact Mostafa Sadeghi, Xavier Alameda-Pineda, and Radu Horaud ([first name].[last name]@inria.fr), with the required documents (CV, transcripts, motivation letter).</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><br data-mce-bogus="1"></span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;"><strong style="box-sizing: border-box; font-weight: bold;" data-mce-style="box-sizing: border-box; font-weight: bold;">References:</strong></span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[1] D. Michelsanti, Z. H. Tan, S. X. Zhang, Y. Xu, M. Yu, D. Yu, and J. Jensen, “An overview of deep learning-based audio-visual speech enhancement and separation,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 29, 2021.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[2] A. Ephrat, I. Mosseri, O. Lang, T. Dekel, K. Wilson, A. Hassidim, W.T. Freeman, M. Rubinstein, “Looking-to-Listen at the Cocktail Party: A Speaker-Independent Audio-Visual Model for Speech Separation,” SIGGRAPH 2018.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[3] M. Sadeghi, S. Leglaive, X. Alameda-Pineda, L. Girin, and R. Horaud, “Audio-visual speech enhancement using conditional variational auto-encoders,” IEEE/ACM Transactions on Audio, Speech and Language Processing, vol. 28, pp. 1788 –1800, 2020.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[4] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in International Conference on Learning Representations (ICLR), 2014.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[5] N. Harte and E. Gillen, “TCD-TIMIT: An Audio-Visual Corpus of Continuous Speech,” IEEE Transactions on Multimedia, vol.17, no.5, pp.603-615, May 2015.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[6] M. Sadeghi and X. Alameda-Pineda, “Switching variational autoencoders for noise-agnostic audio-visual speech enhancement,” in ICASSP, 2021.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[7] Z. Kang, M. Sadeghi, R. Horaud, “Face Frontalization Based on Robustly Fitting a Deformable Shape Model to 3D Landmarks,” in International Conference on Computer Vision (ICCV) Workshops, Montreal – Virtual, Canada, Oct. 2021, pp. 1–16.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[8] Z. Kang, M. Sadeghi, R. Horaud, X. Alameda-Pineda, J. Donley, and A. Kumar, “The impact of removing head movements on audio-visual speech enhancement,” in ICASSP, 2022, pp. 1–5.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[9] L. Girin, S. Leglaive, X. Bie, J. Diard, T. Hueber, and X. Alameda-Pineda, “Dynamical variational autoencoders: A comprehensive review,” Foundations and Trends in Machine Learning, vol. 15, no. 1-2, 2021.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[10] C. Lea, R. Vidal, A. Reiter, and G. D. Hager. “Temporal convolutional networks: A unified approach to action segmentation.” In European Conference on Computer Vision, pp. 47-54. Springer, Cham, 2016.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><span style="font-size: 12pt;" data-mce-style="font-size: 12pt;">[12] J. Jiang, G. G Xia, D. B Carlton, C. N Anderson, and R. H Miyakawa, “Transformer VAE: A hierarchical model for structure-aware and interpretable music representation learning,” in ICASSP, 2020, pp. 516–520.</span></p><p style="box-sizing: border-box; margin: 0px; color: rgb(51, 51, 51); font-family: Mulish, "Helvetica Neue", Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;" data-mce-style="box-sizing: border-box; margin: 0px; color: #333333; font-family: Mulish, 'Helvetica Neue', Helvetica, Arial, sans-serif; font-size: 13px; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; font-weight: 400; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-thickness: initial; text-decoration-style: initial; text-decoration-color: initial;"><br data-mce-bogus="1"></p></div><div><br></div></div></body></html>