<html><body><div style="font-family: arial,helvetica,sans-serif; font-size: 12pt; color: #000000"><div>****************************************<br data-mce-bogus="1"></div><div>CNS 2022 in Melbourne, Australia<br></div><div>****************************************</div><div><br data-mce-bogus="1"></div><div>Tutorial on Saturday, July 16, 1:30pm AEST on<br></div><div>"Spectral Analysis of Neural Signals"<br data-mce-bogus="1"></div><div><br></div><div><p style="margin: 0px;" data-mce-style="margin: 0px;">The spectral analysis of observed neural activity is essential</p><p style="margin: 0px;" data-mce-style="margin: 0px;">in a large part of experimental research. To apply successfully</p><p style="margin: 0px;" data-mce-style="margin: 0px;">the meanwhile large number and different types of spectral </p><p style="margin: 0px;" data-mce-style="margin: 0px;">analysis techniques, it is important to understand in detail</p><p style="margin: 0px;" data-mce-style="margin: 0px;">fundamental aspects of spectral analysis methods.</p><p style="margin: 0px;" data-mce-style="margin: 0px;">The tutorial is targeted at experimentalists at all levels and</p><p style="margin: 0px;" data-mce-style="margin: 0px;">will just touch theoretical details. It will be a hands-on tutorial</p><p style="margin: 0px;" data-mce-style="margin: 0px;">based on practical problems. As an additional support, Python </p><p style="margin: 0px;" data-mce-style="margin: 0px;">source code scripts will be provided for several analysis problems</p><p style="margin: 0px;" data-mce-style="margin: 0px;">discussed in the tutorial. These scripts permit the participant to</p><p style="margin: 0px;" data-mce-style="margin: 0px;">implement herself/himself different techniques discussed and</p><p style="margin: 0px;" data-mce-style="margin: 0px;">support further understanding.</p><p style="margin: 0px;" data-mce-style="margin: 0px;"><br></p><div>Content:</div><div>** Fundamentals in sampling theory, Fourier theory and related</div><div>artifact (aliasing, spectral leakage)</div><div>** Linear filters and spectral power in stationary signals</div><div>** Spectral power in non-stationary signals: windowed Fourier transform</div><div>and time-frequency spectral analysis.</div><div>** The concept of analytical signal: Hilbert Transform, phase </div><div>synchronization, Empirical Mode Decomposition</div><p style="margin: 0px;" data-mce-style="margin: 0px;"><br></p><p style="margin: 0px;" data-mce-style="margin: 0px;">More information at https://www.cnsorg.org/cns-2022-tutorials#T7</p><p style="margin: 0px;" data-mce-style="margin: 0px;"><br></p><p style="margin: 0px;" data-mce-style="margin: 0px;"><br data-mce-bogus="1"></p><p style="margin: 0px;" data-mce-style="margin: 0px;">---------------------------------<br data-mce-bogus="1"></p></div><div>Axel Hutt<br></div><div>Directeur de Recherche<br>Equipe MIMESIS<br>INRIA Nancy Grand Est <br>Bātiment IHU<br>1, Place de l'Hopital<br>67000 Strasbourg, France<br>https://mimesis.inria.fr/speaker/axel-hutt/<br></div></div></body></html>