<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body text="#000000" bgcolor="#ecca99">
    <p><font size="+1"><font face="monospace">Ali, agreed with all, very
          nicely stated.   One thing.. though, I started out 45 years
          ago studying animal behavior for exactly the reasons you
          outline below --thought it might be possible to bootstrap up..
          but connectionism in the 80s seemed to suggest there were
          common elements in computational analysis and models, that
          were not so restricted by species specific behavior.. but more
          in terms of brain complexity.. and here we are 30 years
          later.. with AI finally coming into focus.. as neural blobs.</font></font></p>
    <p><font size="+1"><font face="monospace">Not clear what happens
          next.     I am pretty sure it won't be the symbolic quagmire
          again.  <br>
        </font></font></p>
    <p><font size="+1"><font face="monospace">Steve<br>
        </font></font></p>
    <div class="moz-cite-prefix">On 6/13/22 2:22 PM, Ali Minai wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CABG3s4sfJPi6knGR8aF_4LMmpSS2E+3Hy78gr-8H8fxK=eq3cw@mail.gmail.com">
      <meta http-equiv="content-type" content="text/html; charset=UTF-8">
      <div dir="ltr">
        <div>Gary and Steve</div>
        <div><br>
        </div>
        <div>My use of the phrase "symbolic quagmire" referred only to
          the explicitly symbolic AI models that dominated from the 60s
          through the 80s. It was not meant to diminish the importance
          of understanding symbolic processing and how a distributed,
          self-organizing system like the brain does it. That is
          absolutely crucial - as long as we let the systems be
          brain-like, and not force-fit them into our abstract views of
          symbolic processing (not saying that anyone here is doing
          that, but some others are).</div>
        <div><br>
        </div>
        <div>My own - frankly biased and entirely intuitive - opinion is
          that once we have a sufficiently brain-like system with the
          kind of hierarchical modularity we see in the brain, and
          sufficiently brain-like learning mechanisms in all their
          aspects (base of evolutionary inductive biases, realized
          initially through unsupervised learning, fast RL on top of
          these coupled with development, then - later - supervised
          learning in a more mature system, learning through internal
          rehearsal, learning by prediction mismatch/resonance, use of
          coordination modes/synergies, etc., etc.), processing that we
          can interpret as symbolic and compositional will emerge
          naturally. To this end, we can try to infer neural mechanisms
          underlying this from experiments and theory (as Bengio seems
          to be doing), but I have a feeling that it will be hard if we
          focus only on humans and human-levelprocessing. First, it's
          very hard to do controlled experiments at the required
          resolution, and second, this is the most complex instance. As
          Prof. Smith says in the companion thread, we should ask if
          animals too do what we would regard as symbolic processing,
          and I think that a case can be made that they do, albeit at a
          much simpler level. I have long been fascinated by the data
          suggesting that birds - perhaps even fish - have the concept
          of numerical order, and even something like a number line. If
          we could understand how those simpler brains do it, it might
          be easier to bootstrap up to more complex instances.</div>
        <div><br>
        </div>
        <div>Ultimately we'll understand higher cognition by
          understanding how it evolved from less complex cognition. For
          example, several people have suggested that abstract
          representations might be a much more high-dimensional cortical
          analogs of 2-dimensional hippocampal place representations
          (2-d in rats - maybe higher-d in primates). That would be
          consistent with the fact that so much of our abstract
          reasoning uses spatial and directional metaphors. Re. System I
          and System II, with all due respect to Kahnemann, that is
          surely a simplification. If we were to look phylogenetically,
          we would see the layered emergence of more and more complex
          minds all the way from the Cambrian to now. The binary I and
          II division should be replaced by a sequence of systems,
          though, as with everything is evolution, there are a few major
          punctuations of transformational "enabling technologies", such
          as the bilaterian architecture at the start of the Cambrian,
          the vertebrate architecture, the hippocampus, and the cortex.
          <br>
        </div>
        <div><br>
        </div>
        <div>Truly hybrid systems - neural networks working in tandem
          with explicitly symbolic systems - might be a short-term route
          to addressing specific tasks, but will not give us fundamental
          insight. That is exactly the kind or "error" that Gary has so
          correctly attributed to much of current machine learning. I
          realize that reductionistic analysis and modeling is the
          standard way we understand systems scientically, but complex
          systems are resistant to such analysis.</div>
        <div><br>
        </div>
        <div>Best</div>
        <div>Ali</div>
        <div><br>
        </div>
        <div><br>
        </div>
        <div><br>
        </div>
        <div>
          <div>
            <div dir="ltr" data-smartmail="gmail_signature">
              <div dir="ltr">
                <div>
                  <div dir="ltr">
                    <div>
                      <div dir="ltr">
                        <div>
                          <div dir="ltr">
                            <div>
                              <div dir="ltr">
                                <div>
                                  <div dir="ltr">
                                    <div><b>Ali A. Minai, Ph.D.</b><br>
                                      Professor and Graduate Program
                                      Director<br>
                                      Complex Adaptive Systems Lab<br>
                                      Department of Electrical
                                      Engineering & Computer Science<br>
                                    </div>
                                    <div>828 Rhodes Hall<br>
                                    </div>
                                    <div>University of Cincinnati<br>
                                      Cincinnati, OH 45221-0030<br>
                                    </div>
                                    <div><br>
                                      Phone: (513) 556-4783<br>
                                      Fax: (513) 556-7326<br>
                                      Email: <a
                                        href="mailto:Ali.Minai@uc.edu"
                                        target="_blank"
                                        moz-do-not-send="true">Ali.Minai@uc.edu</a><br>
                                                <a
                                        href="mailto:minaiaa@gmail.com"
                                        target="_blank"
                                        moz-do-not-send="true">minaiaa@gmail.com</a><br>
                                      <br>
                                      WWW: <a
                                        href="http://www.ece.uc.edu/%7Eaminai/"
                                        target="_blank"
                                        moz-do-not-send="true">https://eecs.ceas.uc.edu/~aminai/</a></div>
                                  </div>
                                </div>
                              </div>
                            </div>
                          </div>
                        </div>
                      </div>
                    </div>
                  </div>
                </div>
              </div>
            </div>
          </div>
          <br>
        </div>
      </div>
      <br>
      <div class="gmail_quote">
        <div dir="ltr" class="gmail_attr">On Mon, Jun 13, 2022 at 1:37
          PM <<a href="mailto:jose@rubic.rutgers.edu" target="_blank"
            moz-do-not-send="true">jose@rubic.rutgers.edu</a>> wrote:<br>
        </div>
        <blockquote class="gmail_quote" style="margin:0px 0px 0px
          0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
          <div bgcolor="#ecca99">
            <p><font size="+1"><font face="monospace">Well. your
                  conclusion is based on some hearsay and a talk he
                  gave, I talked with him directly and we discussed what</font></font></p>
            <p><font size="+1"><font face="monospace">you are calling
                  SystemII which just means explicit memory/learning to
                  me and him.. he has no intention of incorporating
                  anything like symbols or</font></font></p>
            <p><font size="+1"><font face="monospace">hybrid
                  Neural/Symbol systems..    he does intend on modeling
                  conscious symbol manipulation. more in the way Dave T.
                  outlined.<br>
                </font></font></p>
            <p><font size="+1"><font face="monospace">AND, I'm sure if
                  he was seeing this.. he would say... "Steve's right".</font></font></p>
            <p><font size="+1"><font face="monospace">Steve</font></font><br>
            </p>
            <div>On 6/13/22 1:10 PM, Gary Marcus wrote:<br>
            </div>
            <blockquote type="cite">
              <div dir="ltr">I don’t think i need to read your
                conversation to have serious doubts about your
                conclusion, but feel free to reprise the arguments here.
                  </div>
              <div dir="ltr"><br>
                <blockquote type="cite">On Jun 13, 2022, at 08:44, <a
                    href="mailto:jose@rubic.rutgers.edu" target="_blank"
                    moz-do-not-send="true">jose@rubic.rutgers.edu</a>
                  wrote:<br>
                  <br>
                </blockquote>
              </div>
              <blockquote type="cite">
                <div dir="ltr">
                  <p><font size="+1"><font face="monospace">We prefer
                        the explicit/implicit cognitive psych refs. but
                        System II is not symbolic.</font></font></p>
                  <p><font size="+1"><font face="monospace">See the
                        AIHUB conversation about this.. we discuss this
                        specifically.</font></font></p>
                  <p><font size="+1"><font face="monospace"><br>
                      </font></font></p>
                  <p><font size="+1"><font face="monospace">Steve</font></font></p>
                  <p><br>
                  </p>
                  <div>On 6/13/22 10:00 AM, Gary Marcus wrote:<br>
                  </div>
                  <blockquote type="cite">
                    <div dir="ltr">Please reread my sentence and reread
                      his recent work. Bengio has absolutely joined in
                      calling for System II processes. Sample is his
                      2019 NeurIPS keynote: <a
href="https://urldefense.com/v3/__https://www.newworldai.com/system-1-deep-learning-system-2-deep-learning-yoshua-bengio/__;!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVOgyztpc$"
                        target="_blank" moz-do-not-send="true">https://www.newworldai.com/system-1-deep-learning-system-2-deep-learning-yoshua-bengio/</a></div>
                    <div dir="ltr"><br>
                    </div>
                    <div dir="ltr">Whether he wants to call it a hybrid
                      approach is his business but he certainly sees
                      that traditional approaches are not covering
                      things like causality and abstract generalization.
                      Maybe he will find a new way, but he recognizes
                      what has not been covered with existing ways. </div>
                    <div dir="ltr"><br>
                    </div>
                    <div dir="ltr">And he is emphasizing both
                      relationships and out of distribution learning,
                      just as I have been for a long time. From his most
                      recent arXiv a few days ago, the first two
                      sentences of which sounds almost exactly like what
                      I have been saying for years:</div>
                    <div dir="ltr"><br>
                    </div>
                    <div dir="ltr">
                      <div>Submitted on 9 Jun 2022]</div>
                      <h1 style="line-height:27.9936px;margin:0.25em 0px
                        12px 20px;font-family:"Lucida
                        Grande",Helvetica,Arial,sans-serif;font-size:1.8em">On
                        Neural Architecture Inductive Biases for
                        Relational Tasks</h1>
                      <div><a
href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Kerg*2C*G__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEV3gZmAsw$"
                          style="text-decoration:none;font-size:medium"
                          target="_blank" moz-do-not-send="true">Giancarlo
                          Kerg</a>, <a
href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Mittal*2C*S__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVLC65Ftc$"
                          style="text-decoration:none;font-size:medium"
                          target="_blank" moz-do-not-send="true">Sarthak
                          Mittal</a>, <a
href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Rolnick*2C*D__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVsXExRpc$"
                          style="text-decoration:none;font-size:medium"
                          target="_blank" moz-do-not-send="true">David
                          Rolnick</a>, <a
href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Bengio*2C*Y__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVTTRf_9g$"
                          style="text-decoration:none;font-size:medium"
                          target="_blank" moz-do-not-send="true">Yoshua
                          Bengio</a>, <a
href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Richards*2C*B__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVnyKkuNY$"
                          style="text-decoration:none;font-size:medium"
                          target="_blank" moz-do-not-send="true">Blake
                          Richards</a>, <a
href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Lajoie*2C*G__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVa03VLYM$"
                          style="text-decoration:none;font-size:medium"
                          target="_blank" moz-do-not-send="true">Guillaume
                          Lajoie</a></div>
                      <blockquote
style="line-height:1.55;font-size:1.05em;margin-bottom:21.6px;background-color:white;border-left-width:0px;padding:0px;font-family:"Lucida
                        Grande",Helvetica,Arial,sans-serif">Current
                        deep learning approaches have shown good
                        in-distribution generalization performance, but
                        struggle with out-of-distribution
                        generalization. This is especially true in the
                        case of tasks involving abstract relations like
                        recognizing rules in sequences, as we find in
                        many intelligence tests. Recent work has
                        explored how forcing relational representations
                        to remain distinct from sensory representations,
                        as it seems to be the case in the brain, can
                        help artificial systems. Building on this work,
                        we further explore and formalize the advantages
                        afforded by 'partitioned' representations of
                        relations and sensory details, and how this
                        inductive bias can help recompose learned
                        relational structure in newly encountered
                        settings. We introduce a simple architecture
                        based on similarity scores which we name
                        Compositional Relational Network (CoRelNet).
                        Using this model, we investigate a series of
                        inductive biases that ensure abstract relations
                        are learned and represented distinctly from
                        sensory data, and explore their effects on
                        out-of-distribution generalization for a series
                        of relational psychophysics tasks. We find that
                        simple architectural choices can outperform
                        existing models in out-of-distribution
                        generalization. Together, these results show
                        that partitioning relational representations
                        from other information streams may be a simple
                        way to augment existing network architectures'
                        robustness when performing out-of-distribution
                        relational computations.</blockquote>
                      <blockquote
style="line-height:1.55;font-size:1.05em;margin-bottom:21.6px;background-color:white;border-left-width:0px;padding:0px;font-family:"Lucida
                        Grande",Helvetica,Arial,sans-serif"><br>
                      </blockquote>
                      <blockquote
style="line-height:1.55;font-size:1.05em;margin-bottom:21.6px;background-color:white;border-left-width:0px;padding:0px;font-family:"Lucida
                        Grande",Helvetica,Arial,sans-serif">Kind of
                        scandalous that he doesn’t ever cite me for
                        having framed that argument, even if I have
                        repeatedly called his attention to that
                        oversight, but that’s another story for a day,
                        in which I elaborate on some Schmidhuber’s
                        observations on history.</blockquote>
                    </div>
                    <div dir="ltr"><br>
                    </div>
                    <div dir="ltr">Gary</div>
                    <div dir="ltr"><br>
                      <blockquote type="cite">On Jun 13, 2022, at 06:44,
                        <a href="mailto:jose@rubic.rutgers.edu"
                          target="_blank" moz-do-not-send="true">jose@rubic.rutgers.edu</a>
                        wrote:<br>
                        <br>
                      </blockquote>
                    </div>
                    <blockquote type="cite">
                      <div dir="ltr">
                        <p><font size="+1"><font face="monospace">No
                              Yoshua has *not* joined you ---Explicit
                              processes, memory, problem solving. .are
                              not Symbolic per se.   <br>
                            </font></font></p>
                        <p><font size="+1"><font face="monospace">These
                              original distinctions in memory and
                              learning were  from Endel Tulving and of
                              course there are brain structures that
                              support the distinctions.<br>
                            </font></font></p>
                        <p><font size="+1"><font face="monospace">and
                              Yoshua is clear about that in discussions
                              I had with him in AIHUB<br>
                            </font></font></p>
                        <p><font size="+1"><font face="monospace">He's
                              definitely not looking to create some
                              hybrid approach..</font></font></p>
                        <p><font size="+1"><font face="monospace">Steve</font></font><br>
                        </p>
                        <div>On 6/13/22 8:36 AM, Gary Marcus wrote:<br>
                        </div>
                        <blockquote type="cite">
                          <div dir="ltr">Cute phrase, but what does
                            “symbolist quagmire” mean? Once upon  atime,
                            Dave and Geoff were both pioneers in trying
                            to getting symbols and neural nets to live
                            in harmony. Don’t we still need do that, and
                            if not, why not?</div>
                          <div dir="ltr"><br>
                          </div>
                          <div dir="ltr">Surely, at the very least</div>
                          <div dir="ltr">- we want our AI to be able to
                            take advantage of the (large) fraction of
                            world knowledge that is represented in
                            symbolic form (language, including
                            unstructured text, logic, math, programming
                            etc)</div>
                          <div dir="ltr">- any model of the human mind
                            ought be able to explain how humans can so
                            effectively communicate via the symbols of
                            language and how trained humans can deal
                            with (to the extent that can) logic, math,
                            programming, etc</div>
                          <div dir="ltr"><br>
                          </div>
                          <div dir="ltr">Folks like Bengio have joined
                            me in seeing the need for “System II”
                            processes. That’s a bit of a rough
                            approximation, but I don’t see how we get to
                            either AI or satisfactory models of the mind
                            without confronting the “quagmire”</div>
                          <div dir="ltr"><br>
                          </div>
                          <div dir="ltr"><br>
                            <blockquote type="cite">On Jun 13, 2022, at
                              00:31, Ali Minai <a
                                href="mailto:minaiaa@gmail.com"
                                target="_blank" moz-do-not-send="true"><minaiaa@gmail.com></a>
                              wrote:<br>
                              <br>
                            </blockquote>
                          </div>
                          <blockquote type="cite">
                            <div dir="ltr">
                              <div dir="ltr">
                                <div>".... symbolic representations are
                                  a fiction our non-symbolic brains
                                  cooked up because the properties of
                                  symbol systems (systematicity,
                                  compositionality, etc.) are
                                  tremendously useful.  So our brains
                                  pretend to be rule-based symbolic
                                  systems when it suits them, because
                                  it's adaptive to do so."</div>
                                <div><br>
                                </div>
                                <div>Spot on, Dave! We should not wade
                                  back into the symbolist quagmire, but
                                  do need to figure out how apparently
                                  symbolic processing can be done by
                                  neural systems. Models like those of
                                  Eliasmith and Smolensky provide some
                                  insight, but still seem far from both
                                  biological plausibility and real-world
                                  scale.</div>
                                <div><br>
                                </div>
                                <div>Best</div>
                                <div><br>
                                </div>
                                <div>Ali<br>
                                </div>
                                <div><br>
                                </div>
                                <div><br>
                                </div>
                                <div>
                                  <div dir="ltr">
                                    <div dir="ltr">
                                      <div>
                                        <div dir="ltr">
                                          <div>
                                            <div dir="ltr">
                                              <div>
                                                <div dir="ltr">
                                                  <div>
                                                    <div dir="ltr">
                                                      <div>
                                                        <div dir="ltr">
                                                          <div><b>Ali A.
                                                          Minai, Ph.D.</b><br>
                                                          Professor and
                                                          Graduate
                                                          Program
                                                          Director<br>
                                                          Complex
                                                          Adaptive
                                                          Systems Lab<br>
                                                          Department of
                                                          Electrical
                                                          Engineering
                                                          & Computer
                                                          Science<br>
                                                          </div>
                                                          <div>828
                                                          Rhodes Hall<br>
                                                          </div>
                                                          <div>University
                                                          of Cincinnati<br>
                                                          Cincinnati, OH
                                                          45221-0030<br>
                                                          </div>
                                                          <div><br>
                                                          Phone: (513)
                                                          556-4783<br>
                                                          Fax: (513)
                                                          556-7326<br>
                                                          Email: <a
                                                          href="mailto:Ali.Minai@uc.edu"
target="_blank" moz-do-not-send="true">Ali.Minai@uc.edu</a><br>
                                                                    <a
href="mailto:minaiaa@gmail.com" target="_blank" moz-do-not-send="true">minaiaa@gmail.com</a><br>
                                                          <br>
                                                          WWW: <a
href="https://urldefense.com/v3/__http://www.ece.uc.edu/*7Eaminai/__;JQ!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXYkS9WrFA$"
target="_blank" moz-do-not-send="true">https://eecs.ceas.uc.edu/~aminai/</a></div>
                                                        </div>
                                                      </div>
                                                    </div>
                                                  </div>
                                                </div>
                                              </div>
                                            </div>
                                          </div>
                                        </div>
                                      </div>
                                    </div>
                                  </div>
                                </div>
                                <br>
                              </div>
                              <br>
                              <div class="gmail_quote">
                                <div dir="ltr" class="gmail_attr">On
                                  Mon, Jun 13, 2022 at 1:35 AM Dave
                                  Touretzky <<a
                                    href="mailto:dst@cs.cmu.edu"
                                    target="_blank"
                                    moz-do-not-send="true">dst@cs.cmu.edu</a>>
                                  wrote:<br>
                                </div>
                                <blockquote class="gmail_quote"
                                  style="margin:0px 0px 0px
                                  0.8ex;border-left:1px solid
                                  rgb(204,204,204);padding-left:1ex">This
                                  timing of this discussion dovetails
                                  nicely with the news story<br>
                                  about Google engineer Blake Lemoine
                                  being put on administrative leave<br>
                                  for insisting that Google's LaMDA
                                  chatbot was sentient and reportedly<br>
                                  trying to hire a lawyer to protect its
                                  rights.  The Washington Post<br>
                                  story is reproduced here:<br>
                                  <br>
                                    <a
href="https://urldefense.com/v3/__https://www.msn.com/en-us/news/technology/the-google-engineer-who-thinks-the-company-s-ai-has-come-to-life/ar-AAYliU1__;!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXapZaIeUg$"
                                    rel="noreferrer" target="_blank"
                                    moz-do-not-send="true">https://www.msn.com/en-us/news/technology/the-google-engineer-who-thinks-the-company-s-ai-has-come-to-life/ar-AAYliU1</a><br>
                                  <br>
                                  Google vice president Blaise Aguera y
                                  Arcas, who dismissed Lemoine's<br>
                                  claims, is featured in a recent
                                  Economist article showing off LaMDA's<br>
                                  capabilities and making noises about
                                  getting closer to "consciousness":<br>
                                  <br>
                                    <a
href="https://urldefense.com/v3/__https://www.economist.com/by-invitation/2022/06/09/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas__;!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXbgg32qHQ$"
                                    rel="noreferrer" target="_blank"
                                    moz-do-not-send="true">https://www.economist.com/by-invitation/2022/06/09/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas</a><br>
                                  <br>
                                  My personal take on the current
                                  symbolist controversy is that symbolic<br>
                                  representations are a fiction our
                                  non-symbolic brains cooked up because<br>
                                  the properties of symbol systems
                                  (systematicity, compositionality,
                                  etc.)<br>
                                  are tremendously useful.  So our
                                  brains pretend to be rule-based
                                  symbolic<br>
                                  systems when it suits them, because
                                  it's adaptive to do so.  (And when<br>
                                  it doesn't suit them, they draw on
                                  "intuition" or "imagery" or some<br>
                                  other mechanisms we can't verbalize
                                  because they're not symbolic.)  They<br>
                                  are remarkably good at this pretense.<br>
                                  <br>
                                  The current crop of deep neural
                                  networks are not as good at pretending<br>
                                  to be symbolic reasoners, but they're
                                  making progress.  In the last 30<br>
                                  years we've gone from networks of
                                  fully-connected layers that make no<br>
                                  architectural assumptions
                                  ("connectoplasm") to complex
                                  architectures<br>
                                  like LSTMs and transformers that are
                                  designed for approximating symbolic<br>
                                  behavior.  But the brain still has a
                                  lot of symbol simulation tricks we<br>
                                  haven't discovered yet.<br>
                                  <br>
                                  Slashdot reader ZiggyZiggyZig had an
                                  interesting argument against LaMDA<br>
                                  being conscious.  If it just waits for
                                  its next input and responds when<br>
                                  it receives it, then it has no
                                  autonomous existence: "it doesn't have
                                  an<br>
                                  inner monologue that constantly runs
                                  and comments everything happening<br>
                                  around it as well as its own thoughts,
                                  like we do."<br>
                                  <br>
                                  What would happen if we built that
                                  in?  Maybe LaMDA would rapidly<br>
                                  descent into gibberish, like some
                                  other text generation models do when<br>
                                  allowed to ramble on for too long. 
                                  But as Steve Hanson points out,<br>
                                  these are still the early days.<br>
                                  <br>
                                  -- Dave Touretzky<br>
                                </blockquote>
                              </div>
                            </div>
                          </blockquote>
                        </blockquote>
                      </div>
                    </blockquote>
                  </blockquote>
                </div>
              </blockquote>
            </blockquote>
          </div>
        </blockquote>
      </div>
    </blockquote>
  </body>
</html>