<div dir="ltr"><div>Gary and Steve</div><div><br></div><div>My use of the phrase "symbolic quagmire" referred only to the explicitly symbolic AI models that dominated from the 60s through the 80s. It was not meant to diminish the importance of understanding symbolic processing and how a distributed, self-organizing system like the brain does it. That is absolutely crucial - as long as we let the systems be brain-like, and not force-fit them into our abstract views of symbolic processing (not saying that anyone here is doing that, but some others are).</div><div><br></div><div>My own - frankly biased and entirely intuitive - opinion is that once we have a sufficiently brain-like system with the kind of hierarchical modularity we see in the brain, and sufficiently brain-like learning mechanisms in all their aspects (base of evolutionary inductive biases, realized initially through unsupervised learning, fast RL on top of these coupled with development, then - later - supervised learning in a more mature system, learning through internal rehearsal, learning by prediction mismatch/resonance, use of coordination modes/synergies, etc., etc.), processing that we can interpret as symbolic and compositional will emerge naturally. To this end, we can try to infer neural mechanisms underlying this from experiments and theory (as Bengio seems to be doing), but I have a feeling that it will be hard if we focus only on humans and human-levelprocessing. First, it's very hard to do controlled experiments at the required resolution, and second, this is the most complex instance. As Prof. Smith says in the companion thread, we should ask if animals too do what we would regard as symbolic processing, and I think that a case can be made that they do, albeit at a much simpler level. I have long been fascinated by the data suggesting that birds - perhaps even fish - have the concept of numerical order, and even something like a number line. If we could understand how those simpler brains do it, it might be easier to bootstrap up to more complex instances.</div><div><br></div><div>Ultimately we'll understand higher cognition by understanding how it evolved from less complex cognition. For example, several people have suggested that abstract representations might be a much more high-dimensional cortical analogs of 2-dimensional hippocampal place representations (2-d in rats - maybe higher-d in primates). That would be consistent with the fact that so much of our abstract reasoning uses spatial and directional metaphors. Re. System I and System II, with all due respect to Kahnemann, that is surely a simplification. If we were to look phylogenetically, we would see the layered emergence of more and more complex minds all the way from the Cambrian to now. The binary I and II division should be replaced by a sequence of systems, though, as with everything is evolution, there are a few major punctuations of transformational "enabling technologies", such as the bilaterian architecture at the start of the Cambrian, the vertebrate architecture, the hippocampus, and the cortex. <br></div><div><br></div><div>Truly hybrid systems - neural networks working in tandem with explicitly symbolic systems - might be a short-term route to addressing specific tasks, but will not give us fundamental insight. That is exactly the kind or "error" that Gary has so correctly attributed to much of current machine learning. I realize that reductionistic analysis and modeling is the standard way we understand systems scientically, but complex systems are resistant to such analysis.</div><div><br></div><div>Best</div><div>Ali</div><div><br></div><div><br></div><div><br></div><div><div><div dir="ltr" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><b>Ali A. Minai, Ph.D.</b><br>Professor and Graduate Program Director<br>Complex Adaptive Systems Lab<br>Department of Electrical Engineering & Computer Science<br></div><div>828 Rhodes Hall<br></div><div>University of Cincinnati<br>Cincinnati, OH 45221-0030<br></div><div><br>Phone: (513) 556-4783<br>Fax: (513) 556-7326<br>Email: <a href="mailto:Ali.Minai@uc.edu" target="_blank">Ali.Minai@uc.edu</a><br>          <a href="mailto:minaiaa@gmail.com" target="_blank">minaiaa@gmail.com</a><br><br>WWW: <a href="http://www.ece.uc.edu/%7Eaminai/" target="_blank">https://eecs.ceas.uc.edu/~aminai/</a></div></div></div></div></div></div></div></div></div></div></div></div></div></div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Mon, Jun 13, 2022 at 1:37 PM <<a href="mailto:jose@rubic.rutgers.edu" target="_blank">jose@rubic.rutgers.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
  
    
  
  <div bgcolor="#ecca99">
    <p><font size="+1"><font face="monospace">Well. your conclusion is
          based on some hearsay and a talk he gave, I talked with him
          directly and we discussed what</font></font></p>
    <p><font size="+1"><font face="monospace">you are calling SystemII
          which just means explicit memory/learning to me and him.. he
          has no intention of incorporating anything like symbols or</font></font></p>
    <p><font size="+1"><font face="monospace">hybrid Neural/Symbol
          systems..    he does intend on modeling conscious symbol
          manipulation. more in the way Dave T. outlined.<br>
        </font></font></p>
    <p><font size="+1"><font face="monospace">AND, I'm sure if he was
          seeing this.. he would say... "Steve's right".</font></font></p>
    <p><font size="+1"><font face="monospace">Steve</font></font><br>
    </p>
    <div>On 6/13/22 1:10 PM, Gary Marcus wrote:<br>
    </div>
    <blockquote type="cite">
      
      <div dir="ltr">I don’t think i need to read your conversation to
        have serious doubts about your conclusion, but feel free to
        reprise the arguments here.   </div>
      <div dir="ltr"><br>
        <blockquote type="cite">On Jun 13, 2022, at 08:44,
          <a href="mailto:jose@rubic.rutgers.edu" target="_blank">jose@rubic.rutgers.edu</a> wrote:<br>
          <br>
        </blockquote>
      </div>
      <blockquote type="cite">
        <div dir="ltr">
          
          <p><font size="+1"><font face="monospace">We prefer the
                explicit/implicit cognitive psych refs. but System II is
                not symbolic.</font></font></p>
          <p><font size="+1"><font face="monospace">See the AIHUB
                conversation about this.. we discuss this specifically.</font></font></p>
          <p><font size="+1"><font face="monospace"><br>
              </font></font></p>
          <p><font size="+1"><font face="monospace">Steve</font></font></p>
          <p><br>
          </p>
          <div>On 6/13/22 10:00 AM, Gary Marcus
            wrote:<br>
          </div>
          <blockquote type="cite">
            
            <div dir="ltr">Please reread my sentence and reread his
              recent work. Bengio has absolutely joined in calling for
              System II processes. Sample is his 2019 NeurIPS keynote: <a href="https://urldefense.com/v3/__https://www.newworldai.com/system-1-deep-learning-system-2-deep-learning-yoshua-bengio/__;!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVOgyztpc$" target="_blank">https://www.newworldai.com/system-1-deep-learning-system-2-deep-learning-yoshua-bengio/</a></div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr">Whether he wants to call it a hybrid approach
              is his business but he certainly sees that traditional
              approaches are not covering things like causality and
              abstract generalization. Maybe he will find a new way, but
              he recognizes what has not been covered with existing
              ways. </div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr">And he is emphasizing both relationships and
              out of distribution learning, just as I have been for a
              long time. From his most recent arXiv a few days ago, the
              first two sentences of which sounds almost exactly like
              what I have been saying for years:</div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr">
              <div>Submitted
                on 9 Jun 2022]</div>
              <h1 style="line-height:27.9936px;margin:0.25em 0px 12px 20px;font-family:"Lucida Grande",Helvetica,Arial,sans-serif;font-size:1.8em">On
                Neural Architecture Inductive Biases for Relational
                Tasks</h1>
              <div><a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Kerg*2C*G__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEV3gZmAsw$" style="text-decoration:none;font-size:medium" target="_blank">Giancarlo Kerg</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Mittal*2C*S__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVLC65Ftc$" style="text-decoration:none;font-size:medium" target="_blank">Sarthak Mittal</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Rolnick*2C*D__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVsXExRpc$" style="text-decoration:none;font-size:medium" target="_blank">David Rolnick</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Bengio*2C*Y__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVTTRf_9g$" style="text-decoration:none;font-size:medium" target="_blank">Yoshua Bengio</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Richards*2C*B__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVnyKkuNY$" style="text-decoration:none;font-size:medium" target="_blank">Blake Richards</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Lajoie*2C*G__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVa03VLYM$" style="text-decoration:none;font-size:medium" target="_blank">Guillaume Lajoie</a></div>
              <blockquote style="line-height:1.55;font-size:1.05em;margin-bottom:21.6px;background-color:white;border-left-width:0px;padding:0px;font-family:"Lucida Grande",Helvetica,Arial,sans-serif">Current deep learning approaches have shown
                good in-distribution generalization performance, but
                struggle with out-of-distribution generalization. This
                is especially true in the case of tasks involving
                abstract relations like recognizing rules in sequences,
                as we find in many intelligence tests. Recent work has
                explored how forcing relational representations to
                remain distinct from sensory representations, as it
                seems to be the case in the brain, can help artificial
                systems. Building on this work, we further explore and
                formalize the advantages afforded by 'partitioned'
                representations of relations and sensory details, and
                how this inductive bias can help recompose learned
                relational structure in newly encountered settings. We
                introduce a simple architecture based on similarity
                scores which we name Compositional Relational Network
                (CoRelNet). Using this model, we investigate a series of
                inductive biases that ensure abstract relations are
                learned and represented distinctly from sensory data,
                and explore their effects on out-of-distribution
                generalization for a series of relational psychophysics
                tasks. We find that simple architectural choices can
                outperform existing models in out-of-distribution
                generalization. Together, these results show that
                partitioning relational representations from other
                information streams may be a simple way to augment
                existing network architectures' robustness when
                performing out-of-distribution relational computations.</blockquote>
              <blockquote style="line-height:1.55;font-size:1.05em;margin-bottom:21.6px;background-color:white;border-left-width:0px;padding:0px;font-family:"Lucida Grande",Helvetica,Arial,sans-serif"><br>
              </blockquote>
              <blockquote style="line-height:1.55;font-size:1.05em;margin-bottom:21.6px;background-color:white;border-left-width:0px;padding:0px;font-family:"Lucida Grande",Helvetica,Arial,sans-serif">Kind of scandalous that he doesn’t ever
                cite me for having framed that argument, even if I have
                repeatedly called his attention to that oversight, but
                that’s another story for a day, in which I elaborate on
                some Schmidhuber’s observations on history.</blockquote>
            </div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr">Gary</div>
            <div dir="ltr"><br>
              <blockquote type="cite">On Jun 13, 2022, at 06:44, <a href="mailto:jose@rubic.rutgers.edu" target="_blank">jose@rubic.rutgers.edu</a>
                wrote:<br>
                <br>
              </blockquote>
            </div>
            <blockquote type="cite">
              <div dir="ltr">
                
                <p><font size="+1"><font face="monospace">No Yoshua has
                      *not* joined you ---Explicit processes, memory,
                      problem solving. .are not Symbolic per se.   <br>
                    </font></font></p>
                <p><font size="+1"><font face="monospace">These original
                      distinctions in memory and learning were  from
                      Endel Tulving and of course there are brain
                      structures that support the distinctions.<br>
                    </font></font></p>
                <p><font size="+1"><font face="monospace">and Yoshua is
                      clear about that in discussions I had with him in
                      AIHUB<br>
                    </font></font></p>
                <p><font size="+1"><font face="monospace">He's
                      definitely not looking to create some hybrid
                      approach..</font></font></p>
                <p><font size="+1"><font face="monospace">Steve</font></font><br>
                </p>
                <div>On 6/13/22 8:36 AM, Gary
                  Marcus wrote:<br>
                </div>
                <blockquote type="cite">
                  
                  <div dir="ltr">Cute phrase, but what does “symbolist
                    quagmire” mean? Once upon  atime, Dave and Geoff
                    were both pioneers in trying to getting symbols and
                    neural nets to live in harmony. Don’t we still need
                    do that, and if not, why not?</div>
                  <div dir="ltr"><br>
                  </div>
                  <div dir="ltr">Surely, at the very least</div>
                  <div dir="ltr">- we want our AI to be able to take
                    advantage of the (large) fraction of world knowledge
                    that is represented in symbolic form (language,
                    including unstructured text, logic, math,
                    programming etc)</div>
                  <div dir="ltr">- any model of the human mind ought be
                    able to explain how humans can so effectively
                    communicate via the symbols of language and how
                    trained humans can deal with (to the extent that
                    can) logic, math, programming, etc</div>
                  <div dir="ltr"><br>
                  </div>
                  <div dir="ltr">Folks like Bengio have joined me in
                    seeing the need for “System II” processes. That’s a
                    bit of a rough approximation, but I don’t see how we
                    get to either AI or satisfactory models of the mind
                    without confronting the “quagmire”</div>
                  <div dir="ltr"><br>
                  </div>
                  <div dir="ltr"><br>
                    <blockquote type="cite">On Jun 13, 2022, at 00:31,
                      Ali Minai <a href="mailto:minaiaa@gmail.com" target="_blank"><minaiaa@gmail.com></a>
                      wrote:<br>
                      <br>
                    </blockquote>
                  </div>
                  <blockquote type="cite">
                    <div dir="ltr">
                      <div dir="ltr">
                        <div>".... symbolic representations are a
                          fiction our non-symbolic brains cooked up
                          because the properties of symbol systems
                          (systematicity, compositionality, etc.) are
                          tremendously useful.  So our brains pretend to
                          be rule-based symbolic systems when it suits
                          them, because it's adaptive to do so."</div>
                        <div><br>
                        </div>
                        <div>Spot on, Dave! We should not wade back into
                          the symbolist quagmire, but do need to figure
                          out how apparently symbolic processing can be
                          done by neural systems. Models like those of
                          Eliasmith and Smolensky provide some insight,
                          but still seem far from both biological
                          plausibility and real-world scale.</div>
                        <div><br>
                        </div>
                        <div>Best</div>
                        <div><br>
                        </div>
                        <div>Ali<br>
                        </div>
                        <div><br>
                        </div>
                        <div><br>
                        </div>
                        <div>
                          <div dir="ltr">
                            <div dir="ltr">
                              <div>
                                <div dir="ltr">
                                  <div>
                                    <div dir="ltr">
                                      <div>
                                        <div dir="ltr">
                                          <div>
                                            <div dir="ltr">
                                              <div>
                                                <div dir="ltr">
                                                  <div><b>Ali A. Minai,
                                                      Ph.D.</b><br>
                                                    Professor and
                                                    Graduate Program
                                                    Director<br>
                                                    Complex Adaptive
                                                    Systems Lab<br>
                                                    Department of
                                                    Electrical
                                                    Engineering &
                                                    Computer Science<br>
                                                  </div>
                                                  <div>828 Rhodes Hall<br>
                                                  </div>
                                                  <div>University of
                                                    Cincinnati<br>
                                                    Cincinnati, OH
                                                    45221-0030<br>
                                                  </div>
                                                  <div><br>
                                                    Phone: (513)
                                                    556-4783<br>
                                                    Fax: (513) 556-7326<br>
                                                    Email: <a href="mailto:Ali.Minai@uc.edu" target="_blank">Ali.Minai@uc.edu</a><br>
                                                              <a href="mailto:minaiaa@gmail.com" target="_blank">minaiaa@gmail.com</a><br>
                                                    <br>
                                                    WWW: <a href="https://urldefense.com/v3/__http://www.ece.uc.edu/*7Eaminai/__;JQ!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXYkS9WrFA$" target="_blank">https://eecs.ceas.uc.edu/~aminai/</a></div>
                                                </div>
                                              </div>
                                            </div>
                                          </div>
                                        </div>
                                      </div>
                                    </div>
                                  </div>
                                </div>
                              </div>
                            </div>
                          </div>
                        </div>
                        <br>
                      </div>
                      <br>
                      <div class="gmail_quote">
                        <div dir="ltr" class="gmail_attr">On Mon, Jun
                          13, 2022 at 1:35 AM Dave Touretzky <<a href="mailto:dst@cs.cmu.edu" target="_blank">dst@cs.cmu.edu</a>>
                          wrote:<br>
                        </div>
                        <blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">This timing
                          of this discussion dovetails nicely with the
                          news story<br>
                          about Google engineer Blake Lemoine being put
                          on administrative leave<br>
                          for insisting that Google's LaMDA chatbot was
                          sentient and reportedly<br>
                          trying to hire a lawyer to protect its
                          rights.  The Washington Post<br>
                          story is reproduced here:<br>
                          <br>
                            <a href="https://urldefense.com/v3/__https://www.msn.com/en-us/news/technology/the-google-engineer-who-thinks-the-company-s-ai-has-come-to-life/ar-AAYliU1__;!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXapZaIeUg$" rel="noreferrer" target="_blank">https://www.msn.com/en-us/news/technology/the-google-engineer-who-thinks-the-company-s-ai-has-come-to-life/ar-AAYliU1</a><br>
                          <br>
                          Google vice president Blaise Aguera y Arcas,
                          who dismissed Lemoine's<br>
                          claims, is featured in a recent Economist
                          article showing off LaMDA's<br>
                          capabilities and making noises about getting
                          closer to "consciousness":<br>
                          <br>
                            <a href="https://urldefense.com/v3/__https://www.economist.com/by-invitation/2022/06/09/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas__;!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXbgg32qHQ$" rel="noreferrer" target="_blank">https://www.economist.com/by-invitation/2022/06/09/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas</a><br>
                          <br>
                          My personal take on the current symbolist
                          controversy is that symbolic<br>
                          representations are a fiction our non-symbolic
                          brains cooked up because<br>
                          the properties of symbol systems
                          (systematicity, compositionality, etc.)<br>
                          are tremendously useful.  So our brains
                          pretend to be rule-based symbolic<br>
                          systems when it suits them, because it's
                          adaptive to do so.  (And when<br>
                          it doesn't suit them, they draw on "intuition"
                          or "imagery" or some<br>
                          other mechanisms we can't verbalize because
                          they're not symbolic.)  They<br>
                          are remarkably good at this pretense.<br>
                          <br>
                          The current crop of deep neural networks are
                          not as good at pretending<br>
                          to be symbolic reasoners, but they're making
                          progress.  In the last 30<br>
                          years we've gone from networks of
                          fully-connected layers that make no<br>
                          architectural assumptions ("connectoplasm") to
                          complex architectures<br>
                          like LSTMs and transformers that are designed
                          for approximating symbolic<br>
                          behavior.  But the brain still has a lot of
                          symbol simulation tricks we<br>
                          haven't discovered yet.<br>
                          <br>
                          Slashdot reader ZiggyZiggyZig had an
                          interesting argument against LaMDA<br>
                          being conscious.  If it just waits for its
                          next input and responds when<br>
                          it receives it, then it has no autonomous
                          existence: "it doesn't have an<br>
                          inner monologue that constantly runs and
                          comments everything happening<br>
                          around it as well as its own thoughts, like we
                          do."<br>
                          <br>
                          What would happen if we built that in?  Maybe
                          LaMDA would rapidly<br>
                          descent into gibberish, like some other text
                          generation models do when<br>
                          allowed to ramble on for too long.  But as
                          Steve Hanson points out,<br>
                          these are still the early days.<br>
                          <br>
                          -- Dave Touretzky<br>
                        </blockquote>
                      </div>
                    </div>
                  </blockquote>
                </blockquote>
              </div>
            </blockquote>
          </blockquote>
        </div>
      </blockquote>
    </blockquote>
  </div>

</blockquote></div>