<html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"></head><body dir="auto"><div dir="ltr"></div><div dir="ltr">I don’t think i need to read your conversation to have serious doubts about your conclusion, but feel free to reprise the arguments here.   </div><div dir="ltr"><br><blockquote type="cite">On Jun 13, 2022, at 08:44, jose@rubic.rutgers.edu wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr">
  
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  
  
    <p><font size="+1"><font face="monospace">We prefer the
          explicit/implicit cognitive psych refs. but System II is not
          symbolic.</font></font></p>
    <p><font size="+1"><font face="monospace">See the AIHUB conversation
          about this.. we discuss this specifically.</font></font></p>
    <p><font size="+1"><font face="monospace"><br>
        </font></font></p>
    <p><font size="+1"><font face="monospace">Steve</font></font></p>
    <p><font size="+1"><font face="monospace"></font></font><br>
    </p>
    <div class="moz-cite-prefix">On 6/13/22 10:00 AM, Gary Marcus wrote:<br>
    </div>
    <blockquote type="cite" cite="mid:5FE7AD49-0551-4E83-8530-5DC88337E22A@nyu.edu">
      <meta http-equiv="content-type" content="text/html; charset=UTF-8">
      <div dir="ltr">Please reread my sentence and reread his recent
        work. Bengio has absolutely joined in calling for System II
        processes. Sample is his 2019 NeurIPS keynote: <a href="https://urldefense.com/v3/__https://www.newworldai.com/system-1-deep-learning-system-2-deep-learning-yoshua-bengio/__;!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVOgyztpc$" moz-do-not-send="true">https://www.newworldai.com/system-1-deep-learning-system-2-deep-learning-yoshua-bengio/</a></div>
      <div dir="ltr"><br>
      </div>
      <div dir="ltr">Whether he wants to call it a hybrid approach is
        his business but he certainly sees that traditional approaches
        are not covering things like causality and abstract
        generalization. Maybe he will find a new way, but he recognizes
        what has not been covered with existing ways. </div>
      <div dir="ltr"><br>
      </div>
      <div dir="ltr">And he is emphasizing both relationships and out of
        distribution learning, just as I have been for a long time. From
        his most recent arXiv a few days ago, the first two sentences of
        which sounds almost exactly like what I have been saying for
        years:</div>
      <div dir="ltr"><br>
      </div>
      <div dir="ltr">
        <div class="dateline" style="-webkit-text-size-adjust: auto;
          margin: 15px 0px 0px 20px; font-style: italic; font-size:
          0.9em; font-family: "Lucida Grande", Helvetica,
          Arial, sans-serif;">Submitted on 9 Jun 2022]</div>
        <h1 class="title mathjax" style="-webkit-text-size-adjust: auto;
          line-height: 27.99359893798828px; margin-block: 12px; margin:
          0.25em 0px 12px 20px; margin-inline-start: 20px; font-family:
          "Lucida Grande", Helvetica, Arial, sans-serif;
          font-size: 1.8em !important;">On Neural Architecture Inductive
          Biases for Relational Tasks</h1>
        <div class="authors" style="-webkit-text-size-adjust: auto;
          margin: 8px 0px 8px 20px; font-size: 1.2em; line-height: 24px;
          font-family: "Lucida Grande", Helvetica, Arial,
          sans-serif;"><a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Kerg*2C*G__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEV3gZmAsw$" style="text-decoration: none; font-size: medium;" moz-do-not-send="true">Giancarlo Kerg</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Mittal*2C*S__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVLC65Ftc$" style="text-decoration: none; font-size: medium;" moz-do-not-send="true">Sarthak Mittal</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Rolnick*2C*D__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVsXExRpc$" style="text-decoration: none; font-size: medium;" moz-do-not-send="true">David Rolnick</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Bengio*2C*Y__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVTTRf_9g$" style="text-decoration: none; font-size: medium;" moz-do-not-send="true">Yoshua Bengio</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Richards*2C*B__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVnyKkuNY$" style="text-decoration: none; font-size: medium;" moz-do-not-send="true">Blake Richards</a>, <a href="https://urldefense.com/v3/__https://arxiv.org/search/cs?searchtype=author&query=Lajoie*2C*G__;JSs!!BhJSzQqDqA!XG4zEf0hOZijhGBf_sFhhbkQzKlArmTaaBCbKV2h_BBa3TSeO_Be99dqthIiW9gcQf1n4qpT0YBNFXEVa03VLYM$" style="text-decoration: none; font-size: medium;" moz-do-not-send="true">Guillaume Lajoie</a></div>
        <blockquote class="abstract mathjax" style="-webkit-text-size-adjust: auto; line-height: 1.55;
          font-size: 1.05em; margin-block: 14.4px 21.6px; margin-bottom:
          21.6px; background-color: white; border-left-width: 0px;
          padding: 0px; font-family: "Lucida Grande",
          Helvetica, Arial, sans-serif;">Current deep learning
          approaches have shown good in-distribution generalization
          performance, but struggle with out-of-distribution
          generalization. This is especially true in the case of tasks
          involving abstract relations like recognizing rules in
          sequences, as we find in many intelligence tests. Recent work
          has explored how forcing relational representations to remain
          distinct from sensory representations, as it seems to be the
          case in the brain, can help artificial systems. Building on
          this work, we further explore and formalize the advantages
          afforded by 'partitioned' representations of relations and
          sensory details, and how this inductive bias can help
          recompose learned relational structure in newly encountered
          settings. We introduce a simple architecture based on
          similarity scores which we name Compositional Relational
          Network (CoRelNet). Using this model, we investigate a series
          of inductive biases that ensure abstract relations are learned
          and represented distinctly from sensory data, and explore
          their effects on out-of-distribution generalization for a
          series of relational psychophysics tasks. We find that simple
          architectural choices can outperform existing models in
          out-of-distribution generalization. Together, these results
          show that partitioning relational representations from other
          information streams may be a simple way to augment existing
          network architectures' robustness when performing
          out-of-distribution relational computations.</blockquote>
        <blockquote class="abstract mathjax" style="-webkit-text-size-adjust: auto; line-height: 1.55;
          font-size: 1.05em; margin-block: 14.4px 21.6px; margin-bottom:
          21.6px; background-color: white; border-left-width: 0px;
          padding: 0px; font-family: "Lucida Grande",
          Helvetica, Arial, sans-serif;"><br>
        </blockquote>
        <blockquote class="abstract mathjax" style="-webkit-text-size-adjust: auto; line-height: 1.55;
          font-size: 1.05em; margin-block: 14.4px 21.6px; margin-bottom:
          21.6px; background-color: white; border-left-width: 0px;
          padding: 0px; font-family: "Lucida Grande",
          Helvetica, Arial, sans-serif;">Kind of scandalous that he
          doesn’t ever cite me for having framed that argument, even if
          I have repeatedly called his attention to that oversight, but
          that’s another story for a day, in which I elaborate on some
          Schmidhuber’s observations on history.</blockquote>
      </div>
      <div dir="ltr"><br>
      </div>
      <div dir="ltr">Gary</div>
      <div dir="ltr"><br>
        <blockquote type="cite">On Jun 13, 2022, at 06:44,
          <a class="moz-txt-link-abbreviated" href="mailto:jose@rubic.rutgers.edu">jose@rubic.rutgers.edu</a> wrote:<br>
          <br>
        </blockquote>
      </div>
      <blockquote type="cite">
        <div dir="ltr">
          <meta http-equiv="Content-Type" content="text/html;
            charset=UTF-8">
          <p><font size="+1"><font face="monospace">No Yoshua has *not*
                joined you ---Explicit processes, memory, problem
                solving. .are not Symbolic per se.   <br>
              </font></font></p>
          <p><font size="+1"><font face="monospace">These original
                distinctions in memory and learning were  from Endel
                Tulving and of course there are brain structures that
                support the distinctions.<br>
              </font></font></p>
          <p><font size="+1"><font face="monospace">and Yoshua is clear
                about that in discussions I had with him in AIHUB<br>
              </font></font></p>
          <p><font size="+1"><font face="monospace">He's definitely not
                looking to create some hybrid approach..</font></font></p>
          <p><font size="+1"><font face="monospace">Steve</font></font><br>
          </p>
          <div class="moz-cite-prefix">On 6/13/22 8:36 AM, Gary Marcus
            wrote:<br>
          </div>
          <blockquote type="cite" cite="mid:5B9E3497-5C1A-450B-A311-12C3122FDCC7@nyu.edu">
            <meta http-equiv="content-type" content="text/html;
              charset=UTF-8">
            <div dir="ltr">Cute phrase, but what does “symbolist
              quagmire” mean? Once upon  atime, Dave and Geoff were both
              pioneers in trying to getting symbols and neural nets to
              live in harmony. Don’t we still need do that, and if not,
              why not?</div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr">Surely, at the very least</div>
            <div dir="ltr">- we want our AI to be able to take advantage
              of the (large) fraction of world knowledge that is
              represented in symbolic form (language, including
              unstructured text, logic, math, programming etc)</div>
            <div dir="ltr">- any model of the human mind ought be able
              to explain how humans can so effectively communicate via
              the symbols of language and how trained humans can deal
              with (to the extent that can) logic, math, programming,
              etc</div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr">Folks like Bengio have joined me in seeing
              the need for “System II” processes. That’s a bit of a
              rough approximation, but I don’t see how we get to either
              AI or satisfactory models of the mind without confronting
              the “quagmire”</div>
            <div dir="ltr"><br>
            </div>
            <div dir="ltr"><br>
              <blockquote type="cite">On Jun 13, 2022, at 00:31, Ali
                Minai <a class="moz-txt-link-rfc2396E" href="mailto:minaiaa@gmail.com" moz-do-not-send="true"><minaiaa@gmail.com></a>
                wrote:<br>
                <br>
              </blockquote>
            </div>
            <blockquote type="cite">
              <div dir="ltr">
                <div dir="ltr">
                  <div>".... symbolic representations are a fiction our
                    non-symbolic brains cooked up because the properties
                    of symbol systems (systematicity, compositionality,
                    etc.) are tremendously useful.  So our brains
                    pretend to be rule-based symbolic systems when it
                    suits them, because it's adaptive to do so."</div>
                  <div><br>
                  </div>
                  <div>Spot on, Dave! We should not wade back into the
                    symbolist quagmire, but do need to figure out how
                    apparently symbolic processing can be done by neural
                    systems. Models like those of Eliasmith and
                    Smolensky provide some insight, but still seem far
                    from both biological plausibility and real-world
                    scale.</div>
                  <div><br>
                  </div>
                  <div>Best</div>
                  <div><br>
                  </div>
                  <div>Ali<br>
                  </div>
                  <div><br>
                  </div>
                  <div><br>
                  </div>
                  <div>
                    <div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature">
                      <div dir="ltr">
                        <div>
                          <div dir="ltr">
                            <div>
                              <div dir="ltr">
                                <div>
                                  <div dir="ltr">
                                    <div>
                                      <div dir="ltr">
                                        <div>
                                          <div dir="ltr">
                                            <div><b>Ali A. Minai, Ph.D.</b><br>
                                              Professor and Graduate
                                              Program Director<br>
                                              Complex Adaptive Systems
                                              Lab<br>
                                              Department of Electrical
                                              Engineering & Computer
                                              Science<br>
                                            </div>
                                            <div>828 Rhodes Hall<br>
                                            </div>
                                            <div>University of
                                              Cincinnati<br>
                                              Cincinnati, OH 45221-0030<br>
                                            </div>
                                            <div><br>
                                              Phone: (513) 556-4783<br>
                                              Fax: (513) 556-7326<br>
                                              Email: <a href="mailto:Ali.Minai@uc.edu" target="_blank" moz-do-not-send="true">Ali.Minai@uc.edu</a><br>
                                                        <a href="mailto:minaiaa@gmail.com" target="_blank" moz-do-not-send="true">minaiaa@gmail.com</a><br>
                                              <br>
                                              WWW: <a href="https://urldefense.com/v3/__http://www.ece.uc.edu/*7Eaminai/__;JQ!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXYkS9WrFA$" target="_blank" moz-do-not-send="true">https://eecs.ceas.uc.edu/~aminai/</a></div>
                                          </div>
                                        </div>
                                      </div>
                                    </div>
                                  </div>
                                </div>
                              </div>
                            </div>
                          </div>
                        </div>
                      </div>
                    </div>
                  </div>
                  <br>
                </div>
                <br>
                <div class="gmail_quote">
                  <div dir="ltr" class="gmail_attr">On Mon, Jun 13, 2022
                    at 1:35 AM Dave Touretzky <<a href="mailto:dst@cs.cmu.edu" moz-do-not-send="true">dst@cs.cmu.edu</a>>
                    wrote:<br>
                  </div>
                  <blockquote class="gmail_quote" style="margin:0px 0px
                    0px 0.8ex;border-left:1px solid
                    rgb(204,204,204);padding-left:1ex">This timing of
                    this discussion dovetails nicely with the news story<br>
                    about Google engineer Blake Lemoine being put on
                    administrative leave<br>
                    for insisting that Google's LaMDA chatbot was
                    sentient and reportedly<br>
                    trying to hire a lawyer to protect its rights.  The
                    Washington Post<br>
                    story is reproduced here:<br>
                    <br>
                      <a href="https://urldefense.com/v3/__https://www.msn.com/en-us/news/technology/the-google-engineer-who-thinks-the-company-s-ai-has-come-to-life/ar-AAYliU1__;!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXapZaIeUg$" rel="noreferrer" target="_blank" moz-do-not-send="true">https://www.msn.com/en-us/news/technology/the-google-engineer-who-thinks-the-company-s-ai-has-come-to-life/ar-AAYliU1</a><br>
                    <br>
                    Google vice president Blaise Aguera y Arcas, who
                    dismissed Lemoine's<br>
                    claims, is featured in a recent Economist article
                    showing off LaMDA's<br>
                    capabilities and making noises about getting closer
                    to "consciousness":<br>
                    <br>
                      <a href="https://urldefense.com/v3/__https://www.economist.com/by-invitation/2022/06/09/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas__;!!BhJSzQqDqA!UCEp_V8mv7wMFGacqyo0e5J8KbCnjHTDVRykqi1DQgMu87m5dBCpbcV6s4bv6xkTdlkwJmvlIXbgg32qHQ$" rel="noreferrer" target="_blank" moz-do-not-send="true">https://www.economist.com/by-invitation/2022/06/09/artificial-neural-networks-are-making-strides-towards-consciousness-according-to-blaise-aguera-y-arcas</a><br>
                    <br>
                    My personal take on the current symbolist
                    controversy is that symbolic<br>
                    representations are a fiction our non-symbolic
                    brains cooked up because<br>
                    the properties of symbol systems (systematicity,
                    compositionality, etc.)<br>
                    are tremendously useful.  So our brains pretend to
                    be rule-based symbolic<br>
                    systems when it suits them, because it's adaptive to
                    do so.  (And when<br>
                    it doesn't suit them, they draw on "intuition" or
                    "imagery" or some<br>
                    other mechanisms we can't verbalize because they're
                    not symbolic.)  They<br>
                    are remarkably good at this pretense.<br>
                    <br>
                    The current crop of deep neural networks are not as
                    good at pretending<br>
                    to be symbolic reasoners, but they're making
                    progress.  In the last 30<br>
                    years we've gone from networks of fully-connected
                    layers that make no<br>
                    architectural assumptions ("connectoplasm") to
                    complex architectures<br>
                    like LSTMs and transformers that are designed for
                    approximating symbolic<br>
                    behavior.  But the brain still has a lot of symbol
                    simulation tricks we<br>
                    haven't discovered yet.<br>
                    <br>
                    Slashdot reader ZiggyZiggyZig had an interesting
                    argument against LaMDA<br>
                    being conscious.  If it just waits for its next
                    input and responds when<br>
                    it receives it, then it has no autonomous existence:
                    "it doesn't have an<br>
                    inner monologue that constantly runs and comments
                    everything happening<br>
                    around it as well as its own thoughts, like we do."<br>
                    <br>
                    What would happen if we built that in?  Maybe LaMDA
                    would rapidly<br>
                    descent into gibberish, like some other text
                    generation models do when<br>
                    allowed to ramble on for too long.  But as Steve
                    Hanson points out,<br>
                    these are still the early days.<br>
                    <br>
                    -- Dave Touretzky<br>
                  </blockquote>
                </div>
              </div>
            </blockquote>
          </blockquote>
        </div>
      </blockquote>
    </blockquote>
  

</div></blockquote></body></html>