<html>
  <head>
    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="moz-text-html" lang="x-unicode">
      <div class="moz-text-html" lang="x-unicode"><b>CALL FOR PAPERS</b>
        <div class="moz-text-html" lang="x-unicode"><br>
          **Apologies for cross-posting**</div>
        <div class="moz-text-html" lang="x-unicode"><b><br>
          </b></div>
        <div class="moz-text-html" lang="x-unicode"> <b>Special Issue</b>
          on<span dir="ltr"></span>
          <p><span dir="ltr"></span> <b>Socially Acceptable Robot
              Behavior: Approaches for Learning, Adaptation and
              Evaluation</b><br>
          </p>
          <p> in <a href="https://benjamins.com/catalog/is">Interaction
              Studies</a> <br>
          </p>
          <p><br>
          </p>
          <p><b>I. Aim and Scope</b></p>
          <p>A key factor for the acceptance of robots as regular
            partners in human-centered environments is the
            appropriateness and predictability of their behavior. The
            behavior of human-human interactions is governed by
            customary rules that define how people should behave in
            different situations, thereby governing their expectations.
            Socially compliant behavior is usually rewarded by group
            acceptance, while non-compliant behavior might have
            consequences including isolation from a social group. Making
            robots able to understand human social norms allows for
            improving the naturalness and effectiveness of human-robot
            interaction and collaboration. Since social norms can differ
            greatly between different cultures and social groups, it is
            essential that robots are able to learn and adapt their
            behavior based on feedback and observations from the
            environment.</p>
          <p>This special issue in <a
              href="https://benjamins.com/catalog/is">Interaction
              Studies</a> aims to attract the latest research aiming at
            learning, producing, and evaluating human-aware robot
            behavior, thereby, following the recent <a
              href="https://tsar2021.ai.vub.ac.be/">RO-MAN 2021 Workshop
              on Robot Behavior Adaptation to Human Social Norms (TSAR)</a>
            in providing a venue to discuss the limitations of the
            current approaches and future directions towards intelligent
            human-aware robot behaviors.<br>
          </p>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <p><b>II. Submission</b><br>
          </p>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <ol>
            <li>Before submitting, please check the official journal <a
                href="https://benjamins.com/catalog/is">guidelines</a>.<br>
            </li>
            <li>For paper submission, please use the <a
                href="https://www.editorialmanager.com/is/default.aspx">online
                submission system</a>.</li>
            <li>After logging into the submission system, please click
              on "Submit a manuscript" and select "Original article".</li>
            <li>Please ensure that you select "Special Issue: Socially
              Acceptable Robot Behavior" under "General information".</li>
          </ol>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <p>    The primary list of topics covers the following points
            (but not limited to):</p>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <ul>
            <li>Human-human vs human-robot social norms</li>
            <li>Influence of cultural and social background on robot
              behavior perception</li>
            <li>Learning of socially accepted behavior</li>
            <li>Behavior adaptation based on social feedback</li>
            <li>Transfer learning of social norms experience</li>
            <li>The role of robot appearance on applied social norms</li>
            <li>Perception of socially normative robot behavior</li>
            <li>Human-aware collaboration and navigation</li>
            <li>Social norms and trust in human-robot interaction</li>
            <li>Representation and modeling techniques for social norms</li>
            <li>Metrics and evaluation criteria for socially compliant
              robot behavior<br>
            </li>
          </ul>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <p><b>III. Timeline</b><br>
          </p>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <ol>
            <li>Deadline for paper submission: <b>March 31, 2022</b><b>
              </b><span lang="en-US"></span> </li>
            <li>First notification for authors: <b>June 15, 2022</b><br>
            </li>
            <li>Deadline for revised papers submission: <b>July 31,
                2022</b></li>
            <li>Final notification for authors: <b>September 15, 2022</b></li>
            <li>Deadline for submission of camera-ready manuscripts: <b>October
                15, 2022</b></li>
          </ol>
          <p>    Please note that these deadlines are only indicative
            and that all submitted papers will be reviewed as soon as
            they are received.<br>
          </p>
          <blockquote>
            <blockquote> </blockquote>
          </blockquote>
          <b>IV. Guest Editors</b><br>
          <blockquote> </blockquote>
          <ol>
            <li><b>Oliver Roesler</b> – Vrije Universiteit Brussel –
              Belgium</li>
            <li><b>Elahe Bagheri</b> – Vrije Universiteit Brussel –
              Belgium</li>
            <li><b>Amir Aly</b> – University of Plymouth – UK</li>
            <li><b>Silvia Rossi</b> – University of Naples Federico II –
              Italy</li>
            <li><b>Rachid Alami</b> – CNRS-LAAS – France</li>
          </ol>
        </div>
      </div>
    </div>
  </body>
</html>