<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class="">Stephen,<div class=""><br class=""></div><div class="">I don’t doubt for a minute that deep learning can characterize some aspects of psychology reasonably well; but either it needs to expands its borders or else be used in conjunction with other techniques. Take for example the name of the new Netflix show</div><div class=""><br class=""></div><div class=""><span style="margin: 0px; padding: 0px; border: 0px; font-family: "Open Sans", sans-serif; font-style: italic; font-stretch: inherit; line-height: inherit; font-size: 16px; vertical-align: baseline; caret-color: rgb(51, 51, 51); color: rgb(51, 51, 51);" class="">The Woman in the House Across the Street from the Girl in the Window</span></div><div class=""><span style="margin: 0px; padding: 0px; border: 0px; font-family: "Open Sans", sans-serif; font-style: italic; font-stretch: inherit; line-height: inherit; font-size: 16px; vertical-align: baseline; caret-color: rgb(51, 51, 51); color: rgb(51, 51, 51);" class=""><br class=""></span></div><div class="">Most of us can infer, compositionally, from that unusually long noun phrase, that the title is a description of particular person, that the title is not a complete sentence, and that the woman in question lives in a house; we also infer that there is a second, distinct person (likely a child) across the street, and so forth. We can also use some knowledge of pragmatics to infer that the woman in question is likely to be the protagonist in the show. Current systems still struggle with that sort of thing. </div><div class=""><br class=""></div><div class="">We can then watch the show (I watched a few minutes of Episode 1) and quickly relate the title to the protagonist’s mental state, start to develop a mental model of the protagonist’s relation to her new neighbors, make inferences about whether certain choices appear to be “within character”, empathize with character or question her judgements, etc, all with respect to a mental model that is rapidly encoded and quickly modified.</div><div class=""><br class=""></div><div class="">I think that an understanding of how people build and modify such models would be extremely valuable (not just for fiction for everyday reality), but I don’t see how deep learning in its current form gives us much purchase on that. There is plenty of precedent for the kind of mental processes I am sketching (e.g Walter Kintsch’s work on text comprehension; Kamp/Kratzer/Heim work on discourse representation, etc) from psychological and linguistic perspectives, but almost no current contact in the neural network community with these well-attested psychological processes. </div><div class=""><br class=""></div><div class="">Gary<br class=""><div><br class=""><blockquote type="cite" class=""><div class="">On Feb 7, 2022, at 6:01 AM, Stephen José Hanson <<a href="mailto:jose@rubic.rutgers.edu" class="">jose@rubic.rutgers.edu</a>> wrote:</div><br class="Apple-interchange-newline"><div class="">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" class="">
<div text="#000000" bgcolor="#ecca99" class=""><p class=""><font size="+1" class="">Gary,</font></p><p class=""><font size="+1" class="">This is one of the first posts of yours, that I
can categorically agree with!</font></p><p class=""><font size="+1" class="">I think building cognitive models through *some*
training regime or focused sampling or architectures or
something but not explicit, for example. <br class="">
</font></p><p class=""><font size="+1" class="">The other fundamental cognitive/perceptual
capability in this context is the ability of Neural Networks to
do what Shepard (1970; Garner 1970s), had modeled as perceptual
separable processing (finding parts) and perceptual integral
process (finding covariance and structure).</font></p><p class=""><font size="+1" class="">Shepard argued these fundamental perceptual
processes were dependent on development and learning. <br class="">
</font></p><p class=""><font size="+1" class="">A task was created with double dissociation of a
categorization problem. In one case: separable ( in effect,
uncorrelated features in the stimulus) were presented in
categorization task that required you pay attention to at least
2 features at the same time to categorize correctly
("condensation"). in the other case: integral stimuli (in
effect correlated features in stimuli) were presented in a
categorization task that required you to ignore the correlation
and do categorize on 1 feature at a time ("filtration"). This
produced a result that separable stimuli were more quickly
learned in filtration tasks then integral stimuli in
condensation tasks. Non-intuitively, Separable stimuli are
learned more slowly in condensation tasks then integral stimuli
then in filtration tasks. In other words attention to feature
structure could cause improvement in learning or interference.
Not that surprising.. however--<br class="">
</font></p><p class=""><font size="+1" class="">In the 1980s NN with single layers (Backprop)
*could not* replicate this simple problem indicating that the
cognitive model was somehow inadequate. Backprop simply
learned ALL task/stimuli parings at the same rate, ignoring the
subtle but critical difference. It failed.<br class="">
</font></p><p class=""><font size="+1" class="">Recently we
(<a class="moz-txt-link-freetext" href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.frontiersin.org_articles_10.3389_fpsyg.2018.00374_full-3F-26utm-5Fsource-3DEmail-5Fto-5Fauthors-5F-26utm-5Fmedium-3DEmail-26utm-5Fcontent-3DT1-5F11.5e1-5Fauthor-26utm-5Fcampaign-3DEmail-5Fpublication-26field-3D-26journalName-3DFrontiers-5Fin-5FPsychology-26id-3D284733&d=DwMDaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=UoNnjRqVBL_CqkrYum3TEgMe4-81VubghRckfDUNtQ8tcpm40eCYjC7e9nor929C&s=U5bZxiHTjY26KZ_tX3LaoOk3ok6HI2wTaC5QOUqGbqc&e=">https://www.frontiersin.org/articles/10.3389/fpsyg.2018.00374/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Psychology&id=284733</a>)
were able to show that JUST BY ADDING LAYERS the DL does match
to human performance.</font></p><p class=""><font size="+1" class="">What are the layers doing? We offer an possible
explanation that needs testing. Layers, appear to create a
type of buffer that allows the network to "curate", feature
detectors that are spatially distant from the input (conv layer,
for example), this curation comes in various attention forms
(something in that will appear in a new paper--not enough room
here), which appears to qualitatively change the network
processing states, and cognitive capabilities. Well, that's
the claim. <br class="">
</font></p><p class=""><font size="+1" class="">The larger point, is that apparently
architectures interact with learning rules, in ways that can
cross this symbolic/neural river of styx, without falling into
it.<br class="">
</font></p><p class=""><font size="+1" class="">Steve<br class="">
</font></p><p class=""><font size="+1" class=""><br class="">
</font></p>
<div class="moz-cite-prefix">On 2/5/22 10:38 AM, Gary Marcus wrote:<br class="">
</div>
<blockquote type="cite" cite="mid:537DF004-25CE-45A2-8155-D7E6018F4EE5@nyu.edu" class="">
<meta http-equiv="content-type" content="text/html; charset=UTF-8" class="">
<div dir="ltr" class="">There is no magic in understanding, just
computation that has been realized in the wetware of humans and
that eventually can be realized in machines. But understanding
is not (just) learning.</div>
<div dir="ltr" class=""><br class="">
</div>
<div dir="ltr" class=""><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody;
font-size: 17.46px;">Understanding </span><span style="font-family: UICTFontTextStyleBody; font-size:
17.46px;" class="">incorporates (or works in tandem with) learning -
but also, critically, in tandem with inference, <i class="">and the
development and maintenance of cognitive models</i>.</span><span style="font-family: UICTFontTextStyleBody; font-size:
17.46px;" class=""> </span> <span style="font-family:
UICTFontTextStyleBody; font-size: 17.46px;" class="">Part of
developing an understanding of cats in general is to learn
long term-knowledge about their properties, both directly
(e.g., through observation) and indirectly (eg through
learning facts</span><span style="font-family:
UICTFontTextStyleBody; font-size: 17.46px;" class=""> </span> <span style="font-family: UICTFontTextStyleBody; font-size:
17.46px;" class="">about animals in general that can be extended to
cats), often through inference (if all animals have DNA, and
a cat is an animal, it must also have DNA).</span><span style="font-family: UICTFontTextStyleBody; font-size:
17.46px;" class=""> </span><span style="font-family:
UICTFontTextStyleBody; font-size: 17.46px;" class=""> </span><span style="font-family: UICTFontTextStyleBody; font-size:
17.46px;" class="">The understanding of a particular cat also
involves direct observation, but also inference (eg</span><span style="font-family: UICTFontTextStyleBody; font-size:
17.46px;" class=""> </span> <span style="font-family:
UICTFontTextStyleBody; font-size: 17.46px;" class="">one might
surmise that the reason that Fluffy is running about the
room is that Fluffy suspects there is a mouse stirring
somewhere nearby). </span><span class="s3" style="font-family: UICTFontTextStyleEmphasizedBody;
font-weight: bold; font-size: 17.46px;">But all of that, I
would say, is subservient to the construction of cognitive
models that can be routinely updated </span><span class="s1" style="font-family: UICTFontTextStyleBody; font-size:
17.46px;">(e.g., Fluffy is currently in the living room,
skittering about, perhaps looking for a mouse).</span></div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody;
font-size: 17.46px;"><br class="">
</span></div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody;
font-size: 17.46px;"> In humans, those dynamic, relational
models, which form part of an understanding, can support
inference (if Fluffy is in the living room, we can infer
that Fluffy is not outside, not lost, etc). Without such
models - which I think represent a core part of
understanding - AGI is an unlikely prospect.</span></div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; min-height: 22.9px; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody; font-size:
17.46px;"><br class="">
</span></div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody;
font-size: 17.46px;">Current neural networks, as it happens,
are better at acquiring long-term knowledge (cats have
whiskers) than they are at dynamically updating cognitive
models in real-time. LLMs like GPT-3 etc lack the kind of
dynamic model that I am describing. To a modest degree they
can approximate it on the basis of large samples of texts,
but their ultimate incoherence stems from the fact that they
do not have robust internal cognitive models that they can
update on the fly. </span></div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; min-height: 22.9px; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody; font-size:
17.46px;"></span><br class="">
</div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody;
font-size: 17.46px;">Without such cognitive models you can
still capture some aspects of understanding (eg predicting
that cats are likely to be furry), but things fall apart
quickly; inference is never reliable, and coherence is
fleeting.</span></div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; min-height: 22.9px; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody; font-size:
17.46px;"></span><br class="">
</div><div style="margin: 0px; font-stretch: normal; font-size: 17.5px; line-height: normal; caret-color: rgb(0, 0, 0);" class=""><span class="s1" style="font-family: UICTFontTextStyleBody;
font-size: 17.46px;">As a final note, one of the most
foundational challenges in constructing adequate cognitive
models of the world is to have a clear distinction between
individuals and kinds; as I emphasized 20 years ago (in The
Algebraic Mind), this has always been a weakness in neural
networks, and I don’t think that the type-token problem has
yet been solved. </span></div>
</div>
<div dir="ltr" class=""><br class="">
</div>
<div dir="ltr" class="">Gary</div>
<div dir="ltr" class=""><br class="">
</div>
<div dir="ltr" class=""><br class="">
<blockquote type="cite" class="">On Feb 5, 2022, at 01:31, Asim Roy
<a class="moz-txt-link-rfc2396E" href="mailto:ASIM.ROY@asu.edu"><ASIM.ROY@asu.edu></a> wrote:<br class="">
<br class="">
</blockquote>
</div>
<blockquote type="cite" class="">
<div dir="ltr" class="">
<meta http-equiv="Content-Type" content="text/html;
charset=UTF-8" class="">
<meta name="Generator" content="Microsoft Word 15 (filtered
medium)" class="">
<!--[if !mso]><style>v\:* {behavior:url(#default#VML);}
o\:* {behavior:url(#default#VML);}
w\:* {behavior:url(#default#VML);}
.shape {behavior:url(#default#VML);}
</style><![endif]-->
<style class="">@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}a:link, span.MsoHyperlink
{mso-style-priority:99;
color:blue;
text-decoration:underline;}span.EmailStyle18
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;}div.WordSection1
{page:WordSection1;}</style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
<div class="WordSection1"><p class="MsoNormal">All,<o:p class=""></o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal">I think the broader question was
“understanding.” Here are two Youtube videos showing
simple robots “learning” to walk. They are purely physical
systems. Do they “understand” anything – such as the need
to go around an obstacle, jumping over an obstacle,
walking up and down stairs and so on? By the way, they
“learn” to do these things on their own, literally
unsupervised, very much like babies. The basic question
is: what is “understanding” if not “learning?” Is there
some other mechanism (magic) at play in our brain that
helps us “understand?” <o:p class=""></o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.youtube.com_watch-3Fv-3Dgn4nRCC9TwQ&d=DwMGaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=Knv_0zpl6J7FTpxevgUOS8qJpyvPOjpOXdLYhyOr6PnKQiWgHaftEAfPvwWb_IAB&s=zdQA6enDajD46kwz-nti6FBklz-72dzlA9NLEzRW1TY&e=" moz-do-not-send="true" class="">https://www.youtube.com/watch?v=gn4nRCC9TwQ</a><o:p class=""></o:p></p><p class="MsoNormal"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.youtube.com_watch-3Fv-3D8sO7VS3q8d0&d=DwMGaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=Knv_0zpl6J7FTpxevgUOS8qJpyvPOjpOXdLYhyOr6PnKQiWgHaftEAfPvwWb_IAB&s=PRhn1hhcfzNtbKXIZpOAM4lyyMp39202wE7Uu4MWg5M&e=" moz-do-not-send="true" class="">https://www.youtube.com/watch?v=8sO7VS3q8d0</a><o:p class=""></o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal">Asim Roy<o:p class=""></o:p></p><p class="MsoNormal">Professor, Information Systems<o:p class=""></o:p></p><p class="MsoNormal">Arizona State University<o:p class=""></o:p></p><p class="MsoNormal"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__lifeboat.com_ex_bios.asim.roy&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=oDRJmXX22O8NcfqyLjyu4Ajmt8pcHWquTxYjeWahfuw&e=" target="_blank" moz-do-not-send="true" class="">Lifeboat
Foundation Bios: Professor Asim Roy</a><o:p class=""></o:p></p><p class="MsoNormal"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__isearch.asu.edu_profile_9973&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=jCesWT7oGgX76_y7PFh4cCIQ-Ife-esGblJyrBiDlro&e=" target="_blank" moz-do-not-send="true" class="">Asim Roy |
iSearch (asu.edu)</a><o:p class=""></o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p><p class="MsoNormal"><o:p class=""> </o:p></p>
<div style="border:none;border-top:solid #E1E1E1
1.0pt;padding:3.0pt 0in 0in 0in" class=""><p class="MsoNormal"><b class="">From:</b> Ali Minai
<a class="moz-txt-link-rfc2396E" href="mailto:minaiaa@gmail.com"><minaiaa@gmail.com></a> <br class="">
<b class="">Sent:</b> Friday, February 4, 2022 11:38 PM<br class="">
<b class="">To:</b> Asim Roy <a class="moz-txt-link-rfc2396E" href="mailto:ASIM.ROY@asu.edu"><ASIM.ROY@asu.edu></a><br class="">
<b class="">Cc:</b> Gary Marcus <a class="moz-txt-link-rfc2396E" href="mailto:gary.marcus@nyu.edu"><gary.marcus@nyu.edu></a>;
Danko Nikolic <a class="moz-txt-link-rfc2396E" href="mailto:danko.nikolic@gmail.com"><danko.nikolic@gmail.com></a>; Brad
Wyble <a class="moz-txt-link-rfc2396E" href="mailto:bwyble@gmail.com"><bwyble@gmail.com></a>;
<a class="moz-txt-link-abbreviated" href="mailto:connectionists@mailman.srv.cs.cmu.edu">connectionists@mailman.srv.cs.cmu.edu</a>; AIhub
<a class="moz-txt-link-rfc2396E" href="mailto:aihuborg@gmail.com"><aihuborg@gmail.com></a><br class="">
<b class="">Subject:</b> Re: Connectionists: Stephen Hanson in
conversation with Geoff Hinton<o:p class=""></o:p></p>
</div><p class="MsoNormal"><o:p class=""> </o:p></p>
<div class="">
<div class=""><p class="MsoNormal">Asim<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal"><o:p class=""> </o:p></p>
</div>
<div class=""><p class="MsoNormal">Of course there's nothing magical
about understanding, and the mind has to emerge from
the physical system, but our AI models at this point
are not even close to realizing how that happens. We
are, at best, simulating a superficial approximation
of a few parts of the real thing. A single, integrated
system where all the aspects of intelligence emerge
from the same deep, well-differentiated physical
substrate is far beyond our capacity. Paying more
attention to neurobiology will be essential to get
there, but so will paying attention to development -
both physical and cognitive - and evolution. The
configuration of priors by evolution is key to
understanding how real intelligence learns so quickly
and from so little. This is not an argument for using
genetic algorithms to design our systems, just for
understanding the tricks evolution has used and
replicating them by design. Development is more
feasible to do computationally, but hardly any models
have looked at it except in a superficial sense.
Nature creates basic intelligence not so much by
configuring functions by explicit training as by
tweaking, modulating, ramifying, and combining
existing ones in a multi-scale self-organization
process. We then learn much more complicated things
(like playing chess) by exploiting that substrate, and
using explicit instruction or learning by practice.
The fundamental lesson of complex systems is that
complexity is built in stages - each level exploiting
the organization of the level below it. We see it in
evolution, development, societal evolution, the
evolution of technology, etc. Our approach in AI, in
contrast, is to initialize a giant, naive system and
train it to do something really complicated - but
really specific - by training the hell out of it.
Sure, now we do build many systems on top of
pre-trained models like GPT-3 and BERT, which is
better, but those models were again trained by the
same none-to-all process I decried above. Contrast
that with how humans acquire language, and how they
integrate it into their *entire* perceptual,
cognitive, and behavioral repertoire, not focusing
just on this or that task. The age of symbolic AI may
have passed, but the reductionistic mindset has not.
We cannot build minds by chopping it into separate
verticals.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal"><o:p class=""> </o:p></p>
</div>
<div class=""><p class="MsoNormal">FTR, I'd say that the emergence of
models such as GLOM and Hawkins and Ahmed's "thousand
brains" is a hopeful sign. They may not be "right",
but they are, I think, looking in the right direction.
With a million miles to go!<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal"><o:p class=""> </o:p></p>
</div>
<div class=""><p class="MsoNormal">Ali<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal"><o:p class=""> </o:p></p>
</div>
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class="">
<div class=""><p class="MsoNormal"><b class="">Ali
A. Minai, Ph.D.</b><br class="">
Professor and Graduate
Program Director<br class="">
Complex Adaptive Systems
Lab<br class="">
Department of Electrical
Engineering & Computer
Science<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal">828
Rhodes Hall<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal">University
of Cincinnati<br class="">
Cincinnati, OH 45221-0030<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal"><br class="">
Phone: (513) 556-4783<br class="">
Fax: (513) 556-7326<br class="">
Email: <a href="mailto:Ali.Minai@uc.edu" target="_blank" moz-do-not-send="true" class="">Ali.Minai@uc.edu</a><br class="">
<a href="mailto:minaiaa@gmail.com" target="_blank" moz-do-not-send="true" class="">minaiaa@gmail.com</a><br class="">
<br class="">
WWW: <a href="https://urldefense.com/v3/__http:/www.ece.uc.edu/*7Eaminai/__;JQ!!IKRxdwAv5BmarQ!Jd2XhTzWg6HDp9IPjlyNv847sUdhGDNfsnqZQ0gy1_mu-CfyUdpBMswhfqdbZTo$" target="_blank" moz-do-not-send="true" class="">
https://eecs.ceas.uc.edu/~aminai/</a><o:p class=""></o:p></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div><p class="MsoNormal"><o:p class=""> </o:p></p>
</div>
</div><p class="MsoNormal"><o:p class=""> </o:p></p>
<div class="">
<div class=""><p class="MsoNormal">On Fri, Feb 4, 2022 at 2:42 AM Asim
Roy <<a href="mailto:ASIM.ROY@asu.edu" moz-do-not-send="true" class="">ASIM.ROY@asu.edu</a>>
wrote:<o:p class=""></o:p></p>
</div>
<blockquote style="border:none;border-left:solid #CCCCCC
1.0pt;padding:0in 0in 0in
6.0pt;margin-left:4.8pt;margin-right:0in" class="">
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">First
of all, the brain is a physical system. There is
no “magic” inside the brain that does the
“understanding” part. Take for example learning to
play tennis. You hit a few balls - some the right
way and some wrong – but you fairly quickly learn
to hit them right most of the time. So there is
obviously some simulation going on in the brain
about hitting the ball in different ways and
“learning” its consequences. What you are calling
“understanding” is really these simulations about
different scenarios. It’s also very similar to
augmentation used to train image recognition
systems where you rotate images, obscure parts and
so on, so that you still can say it’s a cat even
though you see only the cat’s face or whiskers or
a cat flipped on its back. So, if the following
questions relate to “understanding,” you can
easily resolve this by simulating such scenarios
when “teaching” the system. There’s nothing
“magical” about “understanding.” As I said, bear
in mind that the brain, after all, is a physical
system and “teaching” and “understanding” is
embodied in that physical system, not outside it.
So “understanding” is just part of “learning,”
nothing more.<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">DANKO:</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">What would
happen to the hat if the hamster rolls on its
back? (Would the hat fall off?)</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">What would
happen to the red hat when the hamster enters
its lair? (Would the hat fall off?)</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">What would
happen to that hamster when it goes foraging?
(Would the red hat have an influence on finding
food?)</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">What would
happen in a situation of being chased by a
predator? (Would it be easier for predators to
spot the hamster?)</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Asim
Roy<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Professor,
Information Systems<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Arizona
State University<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__lifeboat.com_ex_bios.asim.roy&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=oDRJmXX22O8NcfqyLjyu4Ajmt8pcHWquTxYjeWahfuw&e=" target="_blank" moz-do-not-send="true" class="">Lifeboat
Foundation Bios: Professor Asim Roy</a><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__isearch.asu.edu_profile_9973&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=jCesWT7oGgX76_y7PFh4cCIQ-Ife-esGblJyrBiDlro&e=" target="_blank" moz-do-not-send="true" class="">Asim Roy
| iSearch (asu.edu)</a><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class="">
<div style="border:none;border-top:solid
windowtext 1.0pt;padding:3.0pt 0in 0in
0in;border-color:currentcolor currentcolor" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b class="">From:</b>
Gary Marcus <<a href="mailto:gary.marcus@nyu.edu" target="_blank" moz-do-not-send="true" class="">gary.marcus@nyu.edu</a>>
<br class="">
<b class="">Sent:</b> Thursday, February 3, 2022 9:26
AM<br class="">
<b class="">To:</b> Danko Nikolic <<a href="mailto:danko.nikolic@gmail.com" target="_blank" moz-do-not-send="true" class="">danko.nikolic@gmail.com</a>><br class="">
<b class="">Cc:</b> Asim Roy <<a href="mailto:ASIM.ROY@asu.edu" target="_blank" moz-do-not-send="true" class="">ASIM.ROY@asu.edu</a>>;
Geoffrey Hinton <<a href="mailto:geoffrey.hinton@gmail.com" target="_blank" moz-do-not-send="true" class="">geoffrey.hinton@gmail.com</a>>;
AIhub <<a href="mailto:aihuborg@gmail.com" target="_blank" moz-do-not-send="true" class="">aihuborg@gmail.com</a>>;
<a href="mailto:connectionists@mailman.srv.cs.cmu.edu" target="_blank" moz-do-not-send="true" class="">connectionists@mailman.srv.cs.cmu.edu</a><br class="">
<b class="">Subject:</b> Re: Connectionists: Stephen
Hanson in conversation with Geoff Hinton<o:p class=""></o:p></p>
</div>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Dear
Danko,<o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Well
said. I had a somewhat similar response to Jeff
Dean’s 2021 TED talk, in which he said
(paraphrasing from memory, because I don’t
remember the precise words) that the famous 200
Quoc Le unsupervised model [<a href="https://urldefense.com/v3/__https:/static.googleusercontent.com/media/research.google.com/en/*archive/unsupervised_icml2012.pdf__;Lw!!IKRxdwAv5BmarQ!PFl2URDWVshfy1BPSwAMXKYyn1wszxpN4EPzShAm3sX83AOt05MQX07oVyVLEqo$" target="_blank" moz-do-not-send="true" class="">https://static.googleusercontent.com/media/research.google.com/en//archive/unsupervised_icml2012.pdf</a>]
had learned the concept of a ca. In reality the
model had clustered together some catlike images
based on the image statistics that it had
extracted, but it was a long way from a full,
counterfactual-supporting concept of a cat, much
as you describe below. <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">I
fully agree with you that the reason for even
having a semantics is as you put it, "to 1)
learn with a few examples and 2) apply the
knowledge to a broad set of situations.” GPT-3
sometimes gives the appearance of having done
so, but it falls apart under close inspection,
so the problem remains unsolved.<o:p class=""></o:p></p>
</div>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Gary<o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;margin-bottom:12.0pt"><o:p class=""> </o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt" class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">On
Feb 3, 2022, at 3:19 AM, Danko Nikolic
<<a href="mailto:danko.nikolic@gmail.com" target="_blank" moz-do-not-send="true" class="">danko.nikolic@gmail.com</a>>
wrote:<o:p class=""></o:p></p>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">G.
Hinton wrote: "I believe that any
reasonable person would admit that if
you ask a neural net to draw a picture
of a hamster wearing a red hat and it
draws such a picture, it
understood the request."<o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">I
would like to suggest why drawing
a hamster with a red hat does not
necessarily imply understanding of
the statement "hamster wearing a red
hat".<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">To
understand that "hamster wearing a
red hat" would mean inferring, in
newly emerging situations of this
hamster, all the real-life
implications that the red hat brings
to the little animal.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">What
would happen to the hat if the
hamster rolls on its back? (Would
the hat fall off?)<o:p class=""></o:p></p>
</div>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">What
would happen to the red hat when the
hamster enters its lair? (Would the
hat fall off?)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">What
would happen to that hamster when it
goes foraging? (Would the red hat
have an influence on finding food?)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">What
would happen in a situation of being
chased by a predator? (Would it be
easier for predators to spot the
hamster?)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">...and
so on.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Countless
many questions can be asked. One has
understood "hamster wearing a red
hat" only if one can answer
reasonably well many of such
real-life relevant questions.
Similarly, a student has understood
materias in a class only if they can
apply the materials in real-life
situations (e.g., applying
Pythagora's theorem). If a student
gives a correct answer to a
multiple choice question, we don't
know whether the student understood
the material or whether this was
just rote learning (often, it is
rote learning). <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">I
also suggest that understanding also
comes together with effective
learning: We store new information
in such a way that we can recall it
later and use it effectively i.e.,
make good inferences in newly
emerging situations based on this
knowledge.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">In
short: Understanding makes us humans
able to 1) learn with a few examples
and 2) apply the knowledge to a
broad set of situations. <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">No
neural network today has such
capabilities and we don't know how
to give them such capabilities.
Neural networks need large amounts
of training examples that cover a
large variety of situations and then
the networks can only deal with what
the training examples have already
covered. Neural networks cannot
extrapolate in that 'understanding'
sense.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">I
suggest that understanding truly
extrapolates from a piece of
knowledge. It is not about
satisfying a task such as
translation between languages or
drawing hamsters with hats. It is
how you got the capability to
complete the task: Did you only have
a few examples that covered
something different but related and
then you extrapolated from that
knowledge? If yes, this is going in
the direction of understanding. Have
you seen countless examples and then
interpolated among them? Then
perhaps it is not understanding.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">So,
for the case of drawing a hamster
wearing a red hat, understanding
perhaps would have taken place if
the following happened before that:<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">1)
first, the network learned about
hamsters (not many examples)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">2)
after that the network learned about
red hats (outside the context of
hamsters and without many examples) <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">3)
finally the network learned about
drawing (outside of the context of
hats and hamsters, not many
examples)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">After
that, the network is asked to draw a
hamster with a red hat. If it does
it successfully, maybe we have
started cracking the problem of
understanding.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Note
also that this requires the network
to learn sequentially without
exhibiting catastrophic forgetting
of the previous knowledge, which is
possibly also a consequence of human
learning by understanding.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Danko<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class="">
<div class="">
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Dr.
Danko Nikolić<br class="">
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.danko-2Dnikolic.com&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=HwOLDw6UCRzU5-FPSceKjtpNm7C6sZQU5kuGAMVbPaI&e=" target="_blank" moz-do-not-send="true" class="">www.danko-nikolic.com</a><br class="">
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.linkedin.com_in_danko-2Dnikolic_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=b70c8lokmxM3Kz66OfMIM4pROgAhTJOAlp205vOmCQ8&e=" target="_blank" moz-do-not-send="true" class="">https://www.linkedin.com/in/danko-nikolic/</a><o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">---
A progress usually starts
with an insight ---<o:p class=""></o:p></p>
</div>
</div>
</div>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
</div>
<div id="gmail-m_3776411903040420401DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<table class="MsoNormalTable" style="border:none;border-top:solid
windowtext
1.0pt;border-color:currentcolor
currentcolor" cellpadding="0" border="1">
<tbody class="">
<tr class="">
<td style="width:41.25pt;border:none;padding:9.75pt
.75pt .75pt .75pt" width="55" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.avast.com_sig-2Demail-3Futm-5Fmedium-3Demail-26utm-5Fsource-3Dlink-26utm-5Fcampaign-3Dsig-2Demail-26utm-5Fcontent-3Dwebmail&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=Ao9QQWtO62go0hx1tb3NU6xw2FNBadjj8q64-hl5Sx4&e=" target="_blank" moz-do-not-send="true" class=""><span style="text-decoration:none" class=""><img style="width:.4791in;height:.302in" id="_x0000_i1026" src="https://ipmcdn.avast.com/images/icons/icon-envelope-tick-round-orange-animated-no-repeat-v1.gif" data-unique-identifier="" moz-do-not-send="true" width="46" height="29" border="0" class=""></span></a><o:p class=""></o:p></p>
</td>
<td style="width:352.5pt;border:none;padding:9.0pt
.75pt .75pt .75pt" width="470" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;line-height:13.5pt"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#41424E" class="">Virus-free.
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.avast.com_sig-2Demail-3Futm-5Fmedium-3Demail-26utm-5Fsource-3Dlink-26utm-5Fcampaign-3Dsig-2Demail-26utm-5Fcontent-3Dwebmail&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=Ao9QQWtO62go0hx1tb3NU6xw2FNBadjj8q64-hl5Sx4&e=" target="_blank" moz-do-not-send="true" class="">
<span style="color:#4453EA" class="">www.avast.com</span></a>
</span><o:p class=""></o:p></p>
</td>
</tr>
</tbody>
</table>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">On
Thu, Feb 3, 2022 at 9:55 AM Asim Roy
<<a href="mailto:ASIM.ROY@asu.edu" target="_blank" moz-do-not-send="true" class="">ASIM.ROY@asu.edu</a>>
wrote:<o:p class=""></o:p></p>
</div>
<blockquote style="border:none;border-left:solid
windowtext 1.0pt;padding:0in 0in 0in
6.0pt;margin-left:4.8pt;margin-top:5.0pt;margin-right:0in;margin-bottom:5.0pt;border-color:currentcolor
currentcolor currentcolor
rgb(204,204,204)" class="">
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Without
getting into the specific
dispute between Gary and Geoff,
I think with approaches similar
to GLOM, we are finally headed
in the right direction. There’s
plenty of neurophysiological
evidence for single-cell
abstractions and multisensory
neurons in the brain, which one
might claim correspond to
symbols. And I think we can
finally reconcile the decades
old dispute between Symbolic AI
and Connectionism.<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">GARY: (Your GLOM, which as you
know I praised publicly, is in
many ways an effort to wind up
with encodings that
effectively serve as symbols
in exactly that way,
guaranteed to serve as
consistent representations of
specific concepts.)</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="background-color: yellow;" class="">GARY: I have
<i class="">never</i> called for
dismissal of neural networks,
but rather for some hybrid
between the two (as you
yourself contemplated in
1991); the point of the 2001
book was to characterize
exactly where multilayer
perceptrons succeeded and
broke down, and where symbols
could complement them.</span><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Asim
Roy<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Professor,
Information Systems<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Arizona
State University<o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__lifeboat.com_ex_bios.asim.roy&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=oDRJmXX22O8NcfqyLjyu4Ajmt8pcHWquTxYjeWahfuw&e=" target="_blank" moz-do-not-send="true" class="">Lifeboat
Foundation Bios: Professor
Asim Roy</a><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__isearch.asu.edu_profile_9973&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=jCesWT7oGgX76_y7PFh4cCIQ-Ife-esGblJyrBiDlro&e=" target="_blank" moz-do-not-send="true" class="">Asim
Roy | iSearch (asu.edu)</a><o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class="">
<div style="border:none;border-top:solid
windowtext 1.0pt;padding:3.0pt
0in 0in
0in;border-color:currentcolor
currentcolor" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><b class="">From:</b>
Connectionists <<a href="mailto:connectionists-bounces@mailman.srv.cs.cmu.edu" target="_blank" moz-do-not-send="true" class="">connectionists-bounces@mailman.srv.cs.cmu.edu</a>>
<b class="">On Behalf Of </b>Gary
Marcus<br class="">
<b class="">Sent:</b> Wednesday,
February 2, 2022 1:26 PM<br class="">
<b class="">To:</b> Geoffrey Hinton
<<a href="mailto:geoffrey.hinton@gmail.com" target="_blank" moz-do-not-send="true" class="">geoffrey.hinton@gmail.com</a>><br class="">
<b class="">Cc:</b> AIhub <<a href="mailto:aihuborg@gmail.com" target="_blank" moz-do-not-send="true" class="">aihuborg@gmail.com</a>>;
<a href="mailto:connectionists@mailman.srv.cs.cmu.edu" target="_blank" moz-do-not-send="true" class="">connectionists@mailman.srv.cs.cmu.edu</a><br class="">
<b class="">Subject:</b> Re:
Connectionists: Stephen
Hanson in conversation with
Geoff Hinton<o:p class=""></o:p></p>
</div>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Dear
Geoff, and interested
others,<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">What,
for example, would you make
of a system that often drew
the red-hatted hamster you
requested, and perhaps a
fifth of the time gave you
utter nonsense? Or say one
that you trained to create
birds but sometimes output
stuff like this:<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><image001.png><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">One
could <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">a.
avert one’s eyes and deem
the anomalous outputs
irrelevant<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">or<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">b.
wonder if it might be
possible that sometimes the
system gets the right answer
for the wrong reasons (eg
partial historical
contingency), and wonder
whether another approach
might be indicated.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Benchmarks
are harder than they look;
most of the field has come
to recognize that. The
Turing Test has turned out
to be a lousy measure of
intelligence, easily gamed.
It has turned out
empirically that the
Winograd Schema Challenge
did not measure common sense
as well as Hector might have
thought. (As it happens, I
am a minor coauthor of a
very recent review on this
very topic: <a href="https://urldefense.com/v3/__https:/arxiv.org/abs/2201.02387__;!!IKRxdwAv5BmarQ!INA0AMmG3iD1B8MDtLfjWCwcBjxO-e-eM2Ci9KEO_XYOiIEgiywK-G_8j6L3bHA$" target="_blank" moz-do-not-send="true" class="">https://arxiv.org/abs/2201.02387</a>)
But its conquest in no way
means machines now have
common sense; many people
from many different
perspectives recognize that
(including, e.g., Yann
LeCun, who generally tends
to be more aligned with you
than with me).<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">So:
on the goalpost of the
Winograd schema, I was
wrong, and you can quote me;
but what you said about me
and machine translation
remains your invention, and
it is inexcusable that you
simply ignored my 2019
clarification. On the
essential goal of trying to
reach meaning and
understanding, I remain
unmoved; the problem remains
unsolved. <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">All
of the problems LLMs have
with coherence, reliability,
truthfulness,
misinformation, etc stand
witness to that fact. (Their
persistent inability to
filter out toxic and
insulting remarks stems from
the same.) I am hardly the
only person in the field to
see that progress on any
given benchmark does not
inherently mean that the
deep underlying problems
have solved. You, yourself,
in fact, have occasionally
made that point. <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">With
respect to embeddings:
Embeddings are very good for
natural language
<i class="">processing</i>; but NLP
is not the same as NL<i class="">U</i>
– when it comes to <i class="">understanding</i>,
their worth is still an open
question. Perhaps they will
turn out to be necessary;
they clearly aren’t
sufficient. In their
extreme, they might even
collapse into being symbols,
in the sense of uniquely
identifiable encodings, akin
to the ASCII code, in which
a specific set of numbers
stands for a specific word
or concept. (Wouldn’t that
be ironic?)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">(Your
GLOM, which as you know I
praised publicly, is in many
ways an effort to wind up
with encodings that
effectively serve as symbols
in exactly that way,
guaranteed to serve as
consistent representations
of specific concepts.)<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Notably
absent from your email is
any kind of apology for
misrepresenting my position.
It’s fine to say that “many
people thirty years ago once
thought X” and another to
say “Gary Marcus said X in
2015”, when I didn’t. I have
consistently felt throughout
our interactions that you
have mistaken me for Zenon
Pylyshyn; indeed, you once
(at NeurIPS 2014) apologized
to me for having made that
error. I am still not he. <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Which
maybe connects to the last
point; if you read my work,
you would see thirty years
of arguments
<i class="">for</i> neural networks,
just not in the way that you
want them to exist. I have
ALWAYS argued that there is
a role for them;
characterizing me as a
person “strongly opposed to
neural networks” misses the
whole point of my 2001 book,
which was subtitled
“Integrating Connectionism
and Cognitive Science.”<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">In
the last two decades or so
you have insisted (for
reasons you have never fully
clarified, so far as I know)
on abandoning
symbol-manipulation, but the
reverse is not the case: I
have <i class="">never</i> called
for dismissal of neural
networks, but rather for
some hybrid between the two
(as you yourself
contemplated in 1991); the
point of the 2001 book was
to characterize exactly
where multilayer perceptrons
succeeded and broke down,
and where symbols could
complement them. It’s a
rhetorical trick (which is
what the previous thread was
about) to pretend otherwise.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Gary<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class="">
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;margin-bottom:12.0pt">On
Feb 2, 2022, at 11:22,
Geoffrey Hinton <<a href="mailto:geoffrey.hinton@gmail.com" target="_blank" moz-do-not-send="true" class="">geoffrey.hinton@gmail.com</a>>
wrote:<o:p class=""></o:p></p>
</blockquote>
</div>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt" class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Embeddings
are just vectors of soft
feature detectors and
they are very good for
NLP. The quote on my
webpage from Gary's 2015
chapter implies the
opposite.<o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">A
few decades ago,
everyone I knew then
would have agreed that
the ability to
translate a sentence
into many different
languages was strong
evidence that you
understood it.<o:p class=""></o:p></p>
</div>
</div>
</div>
</blockquote><p class="MsoNormal" style="mso-margin-top-alt:auto;margin-bottom:12.0pt"> <o:p class=""></o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt" class="">
<div class="">
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">But
once neural networks
could do that, their
critics moved the
goalposts. An
exception is Hector
Levesque who defined
the goalposts more
sharply by saying that
the ability to get
pronoun references
correct in Winograd
sentences is a crucial
test. Neural nets are
improving at that but
still have some way to
go. Will Gary agree
that when they can get
pronoun
references correct in
Winograd sentences
they really do
understand? Or does he
want to reserve the
right to weasel out of
that too?<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Some
people, like Gary,
appear to be
strongly opposed to
neural networks
because they do not
fit their preconceived
notions of how the
mind should work.<o:p class=""></o:p></p>
</div>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">I
believe that any
reasonable person
would admit that if
you ask a neural net
to draw a picture of
a hamster wearing a
red hat and it draws
such a picture, it
understood the
request.<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Geoff<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
</div>
</div>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">On
Wed, Feb 2, 2022 at
1:38 PM Gary Marcus
<<a href="mailto:gary.marcus@nyu.edu" target="_blank" moz-do-not-send="true" class="">gary.marcus@nyu.edu</a>>
wrote:<o:p class=""></o:p></p>
</div>
<blockquote style="border:none;border-left:solid
windowtext
1.0pt;padding:0in 0in
0in
6.0pt;margin-left:4.8pt;margin-top:5.0pt;margin-right:0in;margin-bottom:5.0pt;border-color:currentcolor
currentcolor
currentcolor
rgb(204,204,204)" class="">
<div class="">
<div class="">
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Dear
AI Hub, cc:
Steven Hanson
and Geoffrey
Hinton, and
the larger
neural network
community,</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">There
has been a lot
of recent
discussion on
this list
about framing
and scientific
integrity.
Often the
first step in
restructuring
narratives is
to bully and
dehumanize
critics. The
second is to
misrepresent
their
position.
People in
positions of
power are
sometimes
tempted to do
this.</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">The
Hinton-Hanson
interview that
you just
published is a
real-time
example of
just that. It
opens with a
needless and
largely
content-free
personal
attack on a
single scholar
(me), with the
explicit
intention of
discrediting
that person.
Worse, the
only
substantive
thing it says
is false.</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Hinton
says “In 2015
he [Marcus]
made a
prediction
that computers
wouldn’t be
able to do
machine
translation.”</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">I
never said any
such thing. </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">What
I predicted,
rather, was
that
multilayer
perceptrons,
as they
existed then,
would not (on
their own,
absent other
mechanisms) <i class="">understand</i> language.
Seven years
later, they
still haven’t,
except in the
most
superficial
way. </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">I
made no
comment
whatsoever
about machine
translation,
which I view
as a separate
problem,
solvable to a
certain degree
by
correspondance
without
semantics. </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">I
specifically
tried to
clarify
Hinton’s
confusion in
2019, but,
disappointingly,
he has
continued to
purvey
misinformation
despite that
clarification.
Here is what I
wrote
privately to
him then,
which should
have put the
matter to
rest:</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">You
have taken a
single out of
context quote
[from 2015]
and
misrepresented
it. The quote,
which you have
prominently
displayed at
the bottom on
your own web
page, says:</span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal;min-height:22.9px" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div style="margin-left:.75in;font-stretch:normal" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Hierarchies
of features
are less
suited to
challenges
such as
language,
inference, and
high-level
planning. For
example, as
Noam Chomsky
famously
pointed out,
language is
filled with
sentences you
haven't seen
before. Pure
classifier
systems don't
know what to
do with such
sentences. The
talent of
feature
detectors --
in identifying
which member
of some
category
something
belongs to --
doesn't
translate into
understanding
novel sentences, in which each sentence has its own unique meaning. </span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal;min-height:22.9px" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">It
does <i class="">not</i> say
"neural nets
would not be
able to deal
with novel
sentences"; it
says that
hierachies of
features
detectors (on
their own, if
you read the
context of the
essay) would
have trouble <i class="">understanding </i>novel sentences.
</span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal;min-height:22.9px" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Google
Translate does
yet not <i class="">understand</i> the
content of the
sentences is
translates. It
cannot
reliably
answer
questions
about who did
what to whom,
or why, it
cannot infer
the order of
the events in
paragraphs, it
can't
determine the
internal
consistency of
those events,
and so forth.</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Since
then, a number
of scholars,
such as the
the
computational
linguist Emily
Bender, have
made similar
points, and
indeed current
LLM
difficulties
with
misinformation,
incoherence
and
fabrication
all follow
from these
concerns.
Quoting from
Bender’s
prizewinning
2020 ACL
article on the
matter with
Alexander
Koller, <a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aclanthology.org_2020.acl-2Dmain.463.pdf&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=xnFSVUARkfmiXtiTP_uXfFKv4uNEGgEeTluRFR7dnUpay2BM5EiLz-XYCkBNJLlL&s=K-Vl6vSvzuYtRMi-s4j7mzPkNRTb-I6Zmf7rbuKEBpk&e=" target="_blank" moz-do-not-send="true" class="">https://aclanthology.org/2020.acl-main.463.pdf</a>,
also
emphasizing
issues of
understanding
and meaning:</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div style="margin-left:27.0pt;font-stretch:normal" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><i class=""><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">The
success of the
large neural
language
models on many
NLP tasks is
exciting.
However, we
find that
these
successes
sometimes lead
to hype in
which these
models are
being
described as
“understanding”
language or
capturing
“meaning”. In
this position
paper, we
argue that a
system trained
only on form
has a priori
no way to
learn meaning.
.. a clear
understanding
of the
distinction
between form
and meaning
will help
guide the
field towards
better science
around natural
language
understanding. </span></i><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Her
later article
with Gebru on
language
models
“stochastic
parrots” is in
some ways an
extension of
this point;
machine
translation
requires
mimicry, true
understanding
(which is what
I was
discussing in
2015) requires
something
deeper than
that. </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Hinton’s
intellectual
error here is
in equating
machine
translation
with the
deeper
comprehension
that robust
natural
language
understanding
will require;
as Bender and
Koller
observed, the
two appear not
to be the
same. (There
is a longer
discussion of
the relation
between
language
understanding
and machine
translation,
and why the
latter has
turned out to
be more
approachable
than the
former, in my
2019 book with
Ernest Davis).</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">More
broadly,
Hinton’s
ongoing
dismissiveness
of research
from
perspectives
other than his
own (e.g.
linguistics)
have done the
field a
disservice. </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">As
Herb Simon
once observed,
science does
not have to be
zero-sum.</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt" class=""> </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Sincerely,</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Gary
Marcus</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">Professor
Emeritus</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-size:13.0pt;font-family:"Times
New
Roman",serif" class="">New
York
University</span><o:p class=""></o:p></p>
</div>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;margin-bottom:12.0pt"> <o:p class=""></o:p></p>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;margin-bottom:12.0pt">On Feb 2, 2022, at
06:12, AIhub
<<a href="mailto:aihuborg@gmail.com" target="_blank" moz-do-not-send="true" class="">aihuborg@gmail.com</a>> wrote:<o:p class=""></o:p></p>
</blockquote>
</div>
<blockquote style="margin-top:5.0pt;margin-bottom:5.0pt" class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><o:p class=""></o:p></p>
<div class="">
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">Stephen
Hanson in
conversation
with Geoff
Hinton<o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">In the latest
episode of
this video
series for
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__AIhub.org&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=xnFSVUARkfmiXtiTP_uXfFKv4uNEGgEeTluRFR7dnUpay2BM5EiLz-XYCkBNJLlL&s=eOtzMh8ILIH5EF7K20Ks4Fr27XfNV_F24bkj-SPk-2A&e=" target="_blank" moz-do-not-send="true" class="">
AIhub.org</a>,
Stephen Hanson
talks to
Geoff
Hinton about
neural
networks,
backpropagation,
overparameterization, digit recognition, voxel cells, syntax and
semantics,
Winograd
sentences, and
more.<o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto">You can watch
the
discussion,
and read the
transcript,
here:<br clear="all" class="">
<o:p class=""></o:p></p>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aihub.org_2022_02_02_what-2Dis-2Dai-2Dstephen-2Dhanson-2Din-2Dconversation-2Dwith-2Dgeoff-2Dhinton_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=OY_RYGrfxOqV7XeNJDHuzE--aEtmNRaEyQ0VJkqFCWw&e=" target="_blank" moz-do-not-send="true" class="">https://aihub.org/2022/02/02/what-is-ai-stephen-hanson-in-conversation-with-geoff-hinton/</a><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-family:"Arial",sans-serif" class="">About
AIhub: </span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-family:"Arial",sans-serif" class="">AIhub
is a
non-profit
dedicated to
connecting the
AI community
to the public
by providing
free,
high-quality
information
through
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__AIhub.org&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=xnFSVUARkfmiXtiTP_uXfFKv4uNEGgEeTluRFR7dnUpay2BM5EiLz-XYCkBNJLlL&s=eOtzMh8ILIH5EF7K20Ks4Fr27XfNV_F24bkj-SPk-2A&e=" target="_blank" moz-do-not-send="true" class="">
AIhub.org</a>
(<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aihub.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=IKFanqeMi73gOiS7yD-X_vRx_OqDAwv1Il5psrxnhIA&e=" target="_blank" moz-do-not-send="true" class="">https://aihub.org/</a>). We help
researchers
publish the
latest AI
news,
summaries of
their work,
opinion
pieces,
tutorials and
more. We are
supported by
many leading
scientific
organizations
in AI, namely
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aaai.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=wBvjOWTzEkbfFAGNj9wOaiJlXMODmHNcoWO5JYHugS0&e=" target="_blank" moz-do-not-send="true" class="">
AAAI</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__neurips.cc_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=3-lOHXyu8171pT_UE9hYWwK6ft4I-cvYkuX7shC00w0&e=" target="_blank" moz-do-not-send="true" class="">
NeurIPS</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__icml.cc_imls_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=JJyjwIpPy9gtKrZzBMbW3sRMh3P3Kcw-SvtxG35EiP0&e=" target="_blank" moz-do-not-send="true" class="">
ICML</a>, <a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.journals.elsevier.com_artificial-2Dintelligence&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=eWrRCVWlcbySaH3XgacPpi0iR0-NDQYCLJ1x5yyMr8U&e=" target="_blank" moz-do-not-send="true" class="">
AIJ</a>/<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.journals.elsevier.com_artificial-2Dintelligence&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=eWrRCVWlcbySaH3XgacPpi0iR0-NDQYCLJ1x5yyMr8U&e=" target="_blank" moz-do-not-send="true" class="">IJCAI</a>,
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__sigai.acm.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=7rC6MJFaMqOms10EYDQwfnmX-zuVNhu9fz8cwUwiLGQ&e=" target="_blank" moz-do-not-send="true" class="">
ACM SIGAI</a>,
EurAI/AICOMM,
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__claire-2Dai.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=66ZofDIhuDba6Fb0LhlMGD3XbBhU7ez7dc3HD5-pXec&e=" target="_blank" moz-do-not-send="true" class="">
CLAIRE</a> and
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.robocup.org__&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=bBI6GRq--MHLpIIahwoVN8iyXXc7JAeH3kegNKcFJc0&e=" target="_blank" moz-do-not-send="true" class="">
RoboCup</a>.</span><o:p class=""></o:p></p>
</div>
<div class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><span style="font-family:"Arial",sans-serif" class="">Twitter:
@aihuborg</span><o:p class=""></o:p></p>
</div>
</div>
</div>
</div>
</div>
</blockquote>
</div>
</div>
</blockquote>
</div>
</div>
</blockquote>
</div>
</div>
</div>
</blockquote>
</div>
<div id="gmail-m_3776411903040420401DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
<table class="MsoNormalTable" style="border:none;border-top:solid
windowtext
1.0pt;border-color:currentcolor
currentcolor" cellpadding="0" border="1">
<tbody class="">
<tr class="">
<td style="width:41.25pt;border:none;padding:9.75pt
.75pt .75pt .75pt" width="55" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.avast.com_sig-2Demail-3Futm-5Fmedium-3Demail-26utm-5Fsource-3Dlink-26utm-5Fcampaign-3Dsig-2Demail-26utm-5Fcontent-3Dwebmail&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=Ao9QQWtO62go0hx1tb3NU6xw2FNBadjj8q64-hl5Sx4&e=" target="_blank" moz-do-not-send="true" class=""><span style="text-decoration:none" class=""><img style="width:.4791in;height:.302in" id="_x0000_i1025" src="https://ipmcdn.avast.com/images/icons/icon-envelope-tick-round-orange-animated-no-repeat-v1.gif" data-unique-identifier="" moz-do-not-send="true" width="46" height="29" border="0" class=""></span></a><o:p class=""></o:p></p>
</td>
<td style="width:352.5pt;border:none;padding:9.0pt
.75pt .75pt .75pt" width="470" class=""><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto;line-height:13.5pt"><span style="font-size:10.0pt;font-family:"Arial",sans-serif;color:#41424E" class="">Virus-free.
<a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.avast.com_sig-2Demail-3Futm-5Fmedium-3Demail-26utm-5Fsource-3Dlink-26utm-5Fcampaign-3Dsig-2Demail-26utm-5Fcontent-3Dwebmail&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=waSKY67JF57IZXg30ysFB_R7OG9zoQwFwxyps6FbTa1Zh5mttxRot_t4N7mn68Pj&s=Ao9QQWtO62go0hx1tb3NU6xw2FNBadjj8q64-hl5Sx4&e=" target="_blank" moz-do-not-send="true" class="">
<span style="color:#4453EA" class="">www.avast.com</span></a>
</span><o:p class=""></o:p></p>
</td>
</tr>
</tbody>
</table>
</div>
</div>
</blockquote>
</div><p class="MsoNormal" style="mso-margin-top-alt:auto;mso-margin-bottom-alt:auto"> <o:p class=""></o:p></p>
</div>
</div>
</div>
</div>
</blockquote>
</div>
</div>
</div>
</blockquote>
</blockquote>
<div class="moz-signature">-- <br class="">
<span id="cid:part51.0AC1D259.61E87F5D@rubic.rutgers.edu"><signature.png></span></div>
</div>
</div></blockquote></div><br class=""></div></body></html>