<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0in;
        font-size:11.0pt;
        font-family:"Calibri",sans-serif;}
span.EmailStyle19
        {mso-style-type:personal-reply;
        font-family:"Calibri",sans-serif;
        color:windowtext;}
.MsoChpDefault
        {mso-style-type:export-only;
        font-family:"Calibri",sans-serif;}
@page WordSection1
        {size:8.5in 11.0in;
        margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-US" link="blue" vlink="purple" style="word-wrap:break-word">
<div class="WordSection1">
<p class="MsoNormal">I think this is unhelpful, Gary. The question is not whether our brains can do certain things (not always very well) using neurons that, e.g., co-exist with glia, are cells with nuclei containing complex genetic detail, and have axons whose
 behavior can be well described by the Hodgkin-Huxley equations – it is whether networks of a specific kind of “something with only very superficial similarity to our neurons” can do certain tasks.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">As a complementary theme, the history of computers starts with implementing numerical computations in terms of zeros and ones, and then inventing ever more subtle ways to organize computation in terms of higher-level structures whose relations
 to 0s and 1s is of limited importance in the sense that we program now in terms of high-level constructs, not in machine language.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoNormal">Putting the two together, the issue is “what are the high-level languages of brain operation”? If we wish to implement them in silicon their relation to biological neurons may be as secondary as the relation of the implementation to 0s
 and 1s. That’s why, in my own work, I explore networks of “schemas” as well as networks of “neurons” in seeking to understand the cognitive neuroscience of vision, action, language, etc.<o:p></o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
<div style="border:none;border-top:solid #E1E1E1 1.0pt;padding:3.0pt 0in 0in 0in">
<p class="MsoNormal"><b>From:</b> Connectionists <connectionists-bounces@mailman.srv.cs.cmu.edu>
<b>On Behalf Of </b>gary@ucsd.edu<br>
<b>Sent:</b> Friday, February 4, 2022 10:20 AM<br>
<b>To:</b> Danko Nikolic <danko.nikolic@gmail.com><br>
<b>Cc:</b> AIhub <aihuborg@gmail.com>; connectionists@mailman.srv.cs.cmu.edu<br>
<b>Subject:</b> Re: Connectionists: Stephen Hanson in conversation with Geoff Hinton<o:p></o:p></p>
</div>
<p class="MsoNormal"><o:p> </o:p></p>
<div>
<p class="MsoNormal">This is an argument from lack of imagination, as Pat Churchland used to say. All you have to notice, is that your brain is a neural net work. What are the alternatives?<span style="font-size:9.0pt;font-family:"Times New Roman",serif;color:black"><o:p></o:p></span></p>
</div>
</div>
</body>
</html>