<div dir="ltr">You started this thread and it was a mistake for me to engage in arguing with you. I have said all I want to say.  You have endless time for arguing and I don't. I find it more productive to spend time writing programs to see what works and what doesn't. You should try it sometime.<div><br></div><div>Geoff</div><div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Feb 2, 2022 at 3:25 PM Gary Marcus <<a href="mailto:gary.marcus@nyu.edu">gary.marcus@nyu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div style="overflow-wrap: break-word;"><div dir="auto"><div dir="ltr"></div><div dir="ltr">Dear Geoff, and interested others,</div><div dir="ltr"><br></div><div dir="ltr">What, for example, would you make of a system that often drew the red-hatted hamster you requested, and perhaps a fifth of the time gave you utter nonsense?  Or say one that you trained to create birds but sometimes output stuff like this:</div><div dir="ltr"><br></div><div dir="ltr"><img id="gmail-m_106172033997889301445BA1C7-FAE8-440F-9A8F-5C1618F31AA2" width="320" height="320" src="cid:17ebc30a4e0cb971f161"></div><div dir="ltr"><br></div><div dir="ltr">One could </div><div dir="ltr"><br></div><div dir="ltr">a. avert one’s eyes and deem the anomalous outputs irrelevant</div><div dir="ltr">or</div><div dir="ltr">b. wonder if it might be possible that sometimes the system gets the right answer for the wrong reasons (eg partial historical contingency), and wonder whether another approach might be indicated.</div><div dir="ltr"><br></div><div dir="ltr">Benchmarks are harder than they look; most of the field has come to recognize that. The Turing Test has turned out to be a lousy measure of intelligence, easily gamed. It has turned out empirically that the Winograd Schema Challenge did not measure common sense as well as Hector might have thought. (As it happens, I am a minor coauthor of a very recent review on this very topic: <a href="https://arxiv.org/abs/2201.02387" target="_blank">https://arxiv.org/abs/2201.02387</a>) But its conquest in no way means machines now have common sense; many people from many different perspectives recognize that (including, e.g., Yann LeCun, who generally tends to be more aligned with you than with me).</div><div dir="ltr"><br></div><div dir="ltr">So: on the goalpost of the Winograd schema, I was wrong, and you can quote me; but what you said about me and machine translation remains your invention, and it is inexcusable that you simply ignored my 2019 clarification. On the essential goal of trying to reach meaning and understanding, I remain unmoved; the problem remains unsolved. </div><div dir="ltr"><br></div><div dir="ltr">All of the problems LLMs have with coherence, reliability, truthfulness, misinformation, etc stand witness to that fact. (Their persistent inability to filter out toxic and insulting remarks stems from the same.) I am hardly the only person in the field to see that progress on any given benchmark does not inherently mean that the deep underlying problems have solved. You, yourself, in fact, have occasionally made that point. </div><div dir="ltr"><br></div><div dir="ltr">With respect to embeddings: Embeddings are very good for natural language <i>processing</i>; but NLP is not the same as NL<i>U</i> – when it comes to <i>understanding</i>, their worth is still an open question. Perhaps they will turn out to be necessary; they clearly aren’t sufficient. In their extreme, they might even collapse into being symbols, in the sense of uniquely identifiable encodings, akin to the ASCII code, in which a specific set of numbers stands for a specific word or concept. (Wouldn’t that be ironic?)</div><div dir="ltr"><br></div><div dir="ltr">(Your GLOM, which as you know I praised publicly, is in many ways an effort to wind up with encodings that effectively serve as symbols in exactly that way, guaranteed to serve as consistent representations of specific concepts.)</div><div dir="ltr"><br></div><div dir="ltr">Notably absent from your email is any kind of apology for misrepresenting my position. It’s fine to say that “many people thirty years ago once thought X” and another to say “Gary Marcus said X in 2015”, when I didn’t. I have consistently felt throughout our interactions that you have mistaken me for Zenon Pylyshyn; indeed, you once (at NeurIPS 2014) apologized to me for having made that error. I am still not he. </div><div dir="ltr"><br></div><div dir="ltr">Which maybe connects to the last point; if you read my work, you would see thirty years of arguments <i>for</i> neural networks, just not in the way that you want them to exist. I have ALWAYS argued that there is a role for them;  characterizing me as a person “strongly opposed to neural networks” misses the whole point of my 2001 book, which was subtitled “Integrating Connectionism and Cognitive Science.”</div><div dir="ltr"><br></div><div dir="ltr">In the last two decades or so you have insisted (for reasons you have never fully clarified, so far as I know) on abandoning symbol-manipulation, but the reverse is not the case: I have <i>never</i> called for dismissal of neural networks, but rather for some hybrid between the two (as you yourself contemplated in 1991); the point of the 2001 book was to characterize exactly where multilayer perceptrons succeeded and broke down, and where symbols could complement them. It’s a rhetorical trick (which is what the previous thread was about) to pretend otherwise.</div><div dir="ltr"><br></div><div dir="ltr">Gary</div><div dir="ltr"><br></div><div dir="ltr"><br></div><div dir="ltr"><blockquote type="cite">On Feb 2, 2022, at 11:22, Geoffrey Hinton <<a href="mailto:geoffrey.hinton@gmail.com" target="_blank">geoffrey.hinton@gmail.com</a>> wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr"><div dir="ltr">Embeddings are just vectors of soft feature detectors and they are very good for NLP.  The quote on my webpage from Gary's 2015 chapter implies the opposite.<div><br></div><div>A few decades ago, everyone I knew then would have agreed that the ability to translate a sentence into many different languages was strong evidence that you understood it.</div></div></div></blockquote><br><blockquote type="cite"><div dir="ltr"><div dir="ltr"><div>But once neural networks could do that, their critics moved the goalposts. An exception is Hector Levesque who defined the goalposts more sharply by saying that the ability to get pronoun references correct in Winograd sentences is a crucial test. Neural nets are improving at that but still have some way to go. Will Gary agree that when they can get pronoun references correct in Winograd sentences they really do understand? Or does he want to reserve the right to weasel out of that too?</div><div><br></div><div>Some people, like Gary, appear to be strongly opposed to neural networks because they do not fit their preconceived notions of how the mind should work.<br></div><div><div>I believe that any reasonable person would admit that if you ask a neural net to draw a picture of a hamster wearing a red hat and it draws such a picture, it understood the request.</div><div><br></div><div>Geoff</div><div><br></div><div><br></div><div><br><div><br></div></div></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Wed, Feb 2, 2022 at 1:38 PM Gary Marcus <<a href="mailto:gary.marcus@nyu.edu" target="_blank">gary.marcus@nyu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div><div dir="auto"><div dir="ltr"></div><div dir="ltr"><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Dear AI Hub, cc: Steven Hanson and Geoffrey Hinton, and the larger neural network community,</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">There has been a lot of recent discussion on this list about framing and scientific integrity. Often the first step in restructuring narratives is to bully and dehumanize critics. The second is to misrepresent their position. People in positions of power are sometimes tempted to do this.</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">The Hinton-Hanson interview that you just published is a real-time example of just that. It opens with a needless and largely content-free personal attack on a single scholar (me), with the explicit intention of discrediting that person. Worse, the only substantive thing it says is false.</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Hinton says “In 2015 he [Marcus] made a prediction that computers wouldn’t be able to do machine translation.”</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">I never said any such thing. </span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">What I predicted, rather, was that multilayer perceptrons, as they existed then, would not (on their own, absent other mechanisms) </span><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px">understand</span><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"> language. Seven years later, they still haven’t, except in the most superficial way.   </span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">I made no comment whatsoever about machine translation, which I view as a separate problem, solvable to a certain degree by correspondance without semantics. </span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">I specifically tried to clarify Hinton’s confusion in 2019, but, disappointingly, he has continued to purvey misinformation despite that clarification. Here is what I wrote privately to him then, which should have put the matter to rest:</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">You have taken a single out of context quote [from 2015] and misrepresented it. The quote, which you have prominently displayed at the bottom on your own web page, says:</span></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px 0px 0px 72px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Hierarchies of features are less suited to challenges such as language, inference, and high-level planning. For example, as Noam Chomsky famously pointed out, language is filled with sentences you haven't seen before. Pure classifier systems don't know what to do with such sentences. The talent of feature detectors -- in  identifying which member of some category something belongs to -- doesn't translate into understanding novel  sentences, in which each sentence has its own unique meaning. </span></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">It does </span><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px">not</span><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"> say "neural nets would not be able to deal with novel sentences"; it says that hierachies of features detectors (on their own, if you read the context of the essay) would have trouble </span><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px">understanding </span><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">novel sentences.  </span></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Google Translate does yet not </span><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px">understand</span><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"> the content of the sentences is translates. It cannot reliably answer questions about who did what to whom, or why, it cannot infer the order of the events in paragraphs, it can't determine the internal consistency of those events, and so forth.</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Since then, a number of scholars, such as the the computational linguist Emily Bender, have made similar points, and indeed current LLM difficulties with misinformation, incoherence and fabrication all follow from these concerns. Quoting from Bender’s prizewinning 2020 ACL article on the matter with Alexander Koller, <a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aclanthology.org_2020.acl-2Dmain.463.pdf&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=xnFSVUARkfmiXtiTP_uXfFKv4uNEGgEeTluRFR7dnUpay2BM5EiLz-XYCkBNJLlL&s=K-Vl6vSvzuYtRMi-s4j7mzPkNRTb-I6Zmf7rbuKEBpk&e=" target="_blank">https://aclanthology.org/2020.acl-main.463.pdf</a>, also emphasizing issues of understanding and meaning:</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px 0px 0px 36px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px">The success of the large neural language models on many NLP tasks is exciting. However, we find that these successes sometimes lead to hype in which these models are being described as “understanding” language or capturing “meaning”. In this position paper, we argue that a system trained only on form has a priori no way to learn meaning. .. a clear understanding of the distinction between form and meaning will help guide the field towards better science around natural language understanding. </span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Her later article with Gebru on language models “stochastic parrots” is in some ways an extension of this point; machine translation requires mimicry, true understanding (which is what I was discussing in 2015) requires something deeper than that. </span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleItalicBody;font-style:italic;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Hinton’s intellectual error here is in equating machine translation with the deeper comprehension that robust natural language understanding will require; as Bender and Koller observed, the two appear not to be the same. (There is a longer discussion of the relation between language understanding and machine translation, and why the latter has turned out to be more approachable than the former, in my 2019 book with Ernest Davis).</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">More broadly, Hinton’s ongoing dismissiveness of research from perspectives other than his own (e.g. linguistics) have done the field a disservice. </span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">As Herb Simon once observed, science does not have to be zero-sum.</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal;min-height:22.9px"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px"></span><br></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Sincerely,</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Gary Marcus</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">Professor Emeritus</span></div><div style="margin:0px;font-stretch:normal;font-size:17.5px;line-height:normal"><span style="font-family:UICTFontTextStyleBody;font-size:17.46px">New York University</span></div></div><div dir="ltr"><br><blockquote type="cite">On Feb 2, 2022, at 06:12, AIhub <<a href="mailto:aihuborg@gmail.com" target="_blank">aihuborg@gmail.com</a>> wrote:<br><br></blockquote></div><blockquote type="cite"><div dir="ltr"><div dir="ltr"><div>Stephen Hanson in conversation with Geoff Hinton</div><div><br></div><div>In the latest episode of this video series for <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__AIhub.org&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=xnFSVUARkfmiXtiTP_uXfFKv4uNEGgEeTluRFR7dnUpay2BM5EiLz-XYCkBNJLlL&s=eOtzMh8ILIH5EF7K20Ks4Fr27XfNV_F24bkj-SPk-2A&e=" target="_blank">AIhub.org</a>, Stephen Hanson talks to 

Geoff Hinton about neural networks, backpropagation, overparameterization, digit recognition, voxel cells, syntax and semantics, Winograd sentences, and more.<br><div><br></div><div>You can watch the discussion, and read the transcript, here:<br clear="all"><div><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aihub.org_2022_02_02_what-2Dis-2Dai-2Dstephen-2Dhanson-2Din-2Dconversation-2Dwith-2Dgeoff-2Dhinton_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=OY_RYGrfxOqV7XeNJDHuzE--aEtmNRaEyQ0VJkqFCWw&e=" target="_blank">https://aihub.org/2022/02/02/what-is-ai-stephen-hanson-in-conversation-with-geoff-hinton/</a><font face="arial, sans-serif"><br></font></div><div><br></div><div><font face="arial, sans-serif">About AIhub: </font></div><div><font face="arial, sans-serif"><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">AIhub is a non-profit dedicated to connecting the AI community to the public by providing free, high-quality information through <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__AIhub.org&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=xnFSVUARkfmiXtiTP_uXfFKv4uNEGgEeTluRFR7dnUpay2BM5EiLz-XYCkBNJLlL&s=eOtzMh8ILIH5EF7K20Ks4Fr27XfNV_F24bkj-SPk-2A&e=" target="_blank">AIhub.org</a> (</span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aihub.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=IKFanqeMi73gOiS7yD-X_vRx_OqDAwv1Il5psrxnhIA&e=" style="text-decoration-line:none" target="_blank"><span style="background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;text-decoration-line:underline;vertical-align:baseline;white-space:pre-wrap">https://aihub.org/</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">). We help researchers publish the latest AI news, summaries of their work, opinion pieces, tutorials and more.  We are supported by many leading scientific organizations in AI, namely </span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__aaai.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=wBvjOWTzEkbfFAGNj9wOaiJlXMODmHNcoWO5JYHugS0&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">AAAI</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">, </span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__neurips.cc_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=3-lOHXyu8171pT_UE9hYWwK6ft4I-cvYkuX7shC00w0&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">NeurIPS</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">, </span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__icml.cc_imls_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=JJyjwIpPy9gtKrZzBMbW3sRMh3P3Kcw-SvtxG35EiP0&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">ICML</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">, </span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.journals.elsevier.com_artificial-2Dintelligence&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=eWrRCVWlcbySaH3XgacPpi0iR0-NDQYCLJ1x5yyMr8U&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">AIJ</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">/</span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.journals.elsevier.com_artificial-2Dintelligence&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=eWrRCVWlcbySaH3XgacPpi0iR0-NDQYCLJ1x5yyMr8U&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">IJCAI</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">, </span><a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__sigai.acm.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=7rC6MJFaMqOms10EYDQwfnmX-zuVNhu9fz8cwUwiLGQ&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">ACM SIGAI</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">, EurAI/AICOMM, </span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__claire-2Dai.org_&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=66ZofDIhuDba6Fb0LhlMGD3XbBhU7ez7dc3HD5-pXec&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">CLAIRE</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap"> and </span><a href="https://urldefense.proofpoint.com/v2/url?u=https-3A__www.robocup.org__&d=DwMFaQ&c=slrrB7dE8n7gBJbeO0g-IQ&r=wQR1NePCSj6dOGDD0r6B5Kn1fcNaTMg7tARe7TdEDqQ&m=yl7-VPSvMrHWYKZFtKdFpThQ9UTb2jW14grhVOlAwV21R4FwPri0ROJ-uFdMqHy1&s=bBI6GRq--MHLpIIahwoVN8iyXXc7JAeH3kegNKcFJc0&e=" style="text-decoration-line:none" target="_blank"><span style="color:rgb(0,0,0);background-color:transparent;font-variant-numeric:normal;font-variant-east-asian:normal;vertical-align:baseline;white-space:pre-wrap">RoboCup</span></a><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">.</span><br></font></div><div><font face="arial, sans-serif"><span style="font-variant-numeric:normal;font-variant-east-asian:normal;background-color:transparent;color:rgb(0,0,0);vertical-align:baseline;white-space:pre-wrap">Twitter: </span><span style="color:rgb(0,0,0);white-space:pre-wrap">@aihuborg</span></font></div></div></div><div dir="ltr"><div dir="ltr"></div></div></div>
</div></blockquote></div></div></blockquote></div>
</div></blockquote></div></div></blockquote></div>