<div dir="ltr"><br><div class="gmail_quote"><div><div class="gmail_quote">We have a fully funded Ph.D. position to work at the intersection of<br>Robotics and Formal Methods on the CoLeSlAw project.<br><br><br>Continuously Learning Complex Tasks via Symbolic Analysis (CoLeSlAw)<br>--------------------------------------------------------------------------------<br>Fully autonomous robots have the potential to impact real-life<br>applications, like assisting elderly people. Autonomous robots must<br>deal with uncertain and continuously changing environments, where it<br>is not possible to program the robot tasks. Instead, the robot must<br>continuously learn new tasks. The robot should further learn how to<br>perform more complex tasks combining simpler ones (i.e., a task<br>hierarchy). This problem is called lifelong learning of hierarchical<br>tasks.<br><br>The existing learning algorithms for hierarchical tasks are limited in<br>that: a) they require the robot to execute a large number of real<br>actions to sample the continuous state space of observations, hence<br>requiring a lot of time; b) they cannot deal with subspaces without<br>continuous interpolation, as it is the case for a hierarchy of tasks.<br><br>The goal of the Ph.D. project is to explore the use of set-based<br>and symbolic reasoning for the continuous space to tackle the above<br>challenges (e.g., reducing the number of samples required to learn a<br>hierarchy of tasks and allow for more effective planning of the robot<br>tasks, further handling discontinuities in the task hierarchies).<br><br>The main outcome of the project will be an algorithmic framework to<br>effectively explore task hierarchies and new reachability algorithms<br>for data-oriented models, such as neural networks.<br><br>A detailed description of the project is available online:<br><a href="http://www.sergiomover.eu/others/colesaw_description.pdf" target="_blank">http://www.sergiomover.eu/others/colesaw_description.pdf</a><br><br><br>Candidate<br>--------------------------------------------------------------------------------<br>The ideal candidate will have a Master degree in Computer Science,<br>Computer Engineering, or Robotics, with a strong background in at<br>least one topic among learning algorithms, robotics, planning, and<br>formal methods (e.g., abstract interpretation, model checking).<br><br><br>Deadlines<br>--------------------------------------------------------------------------------<br>The Ph.D. will start as soon as possible and not later than June 1st<br>2021.<br><br>We encourage the candidates to contact us before February 28th 2021<br>to receive full consideration.<br><br><br>Work environment<br>--------------------------------------------------------------------------------<br>The Ph.D. will be carried out in the Laboratoire d’informatique de<br>École Polytechnique (LIX), École Polytechnique, and in the Computer<br>Science and Systems Engineering Laboratory (U2IS), ENSTA Paris, ENSTA Paris.<br><br><br>Doctoral School<br>--------------------------------------------------------------------------------<br>École Polytechnique and ENSTA Paris are part of the Institut<br>Polytechnique de Paris (IPP) and the Ph.D. will be at in the IPP<br>doctoral school<br>(<a href="https://www.ip-paris.fr/en/home-en/education/phd-programs/ip-paris-doctoral-school/" target="_blank">https://www.ip-paris.fr/en/home-en/education/phd-programs/ip-paris-doctoral-school/</a>).<br><br><br><br><br>Contacts and application<br>--------------------------------------------------------------------------------<br><div>To apply, please send a CV, a motivation letter and a transcript.</div><div>For more information and to get the information to apply contact<br></div>Sergio Mover, Cosynus Team, LIX and Ecole Polytechnique, sergio.mover <at> <a href="http://polytechnique.edu" target="_blank">polytechnique.edu</a><br></div></div><div><div class="gmail_quote"><div><div><br></div><br><div><br></div><div><br clear="all"><div><div><div><div><div><div><div><font face="arial, helvetica, sans-serif">Nguyen Sao Mai</font><br><font style="background-color:rgb(255,255,255)" size="1" face="times new roman, serif" color="#666666"><a href="mailto:nguyensmai@gmail.com" target="_blank"><font>nguyensmai@gmail.com</font></a></font><br><font style="background-color:rgb(255,255,255)" size="1" face="times new roman, serif" color="#666666"><span style="border-collapse:separate">Researcher in Cognitive Developmental Robotics</span></font></div></div></div></div></div></div></div></div></div></div></div><div dir="ltr"><div class="gmail_quote"><div><div><div><div><div><div><div><div><div><div><font size="1" face="times new roman, serif" color="#666666"><a href="http://nguyensmai.free.fr" target="_blank">http://nguyensmai.free.fr </a>| <a href="http://www.youtube.com/user/nguyensmai" target="_blank">Youtube</a> | <a href="https://twitter.com/nguyensmai" target="_blank">Twitter</a> | <a href="https://www.researchgate.net/profile/Sao_Mai_Nguyen" target="_blank">ResearchGate</a> | <a href="https://hal.inria.fr/search/index/?q=%2A&authIdHal_s=sao-mai-nguyen&sort=producedDate_tdate+desc" target="_blank">Hal </a></font><br></div></div></div></div></div></div></div></div></div></div></div></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
</blockquote></div></div>