<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p.MsoPlainText, li.MsoPlainText, div.MsoPlainText
{mso-style-priority:99;
mso-style-link:"Plain Text Char";
margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
p.msonormal0, li.msonormal0, div.msonormal0
{mso-style-name:msonormal;
mso-margin-top-alt:auto;
margin-right:0cm;
mso-margin-bottom-alt:auto;
margin-left:0cm;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.PlainTextChar
{mso-style-name:"Plain Text Char";
mso-style-priority:99;
mso-style-link:"Plain Text";
font-family:"Calibri",sans-serif;}
span.EmailStyle20
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle21
{mso-style-type:personal;
font-family:"Calibri",sans-serif;
color:windowtext;}
span.EmailStyle22
{mso-style-type:personal-reply;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-size:10.0pt;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:72.0pt 72.0pt 72.0pt 72.0pt;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="EN-SG" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal"><o:p> </o:p></p>
<p class="MsoPlainText">Dear Colleague, <o:p></o:p></p>
<p class="MsoPlainText"><o:p> </o:p></p>
<p class="MsoPlainText">We look forward to your participation in the "Randomization-Based Learning Algorithms and Their Applications" Special Session at ICONIP 2020 in Bangkok, Thailand during 18-22 November. Online presentation is possible/encouraged. Topics
of interests are listed below. Please feel free to forward to your collaborators.
<o:p></o:p></p>
<p class="MsoPlainText"> <o:p></o:p></p>
<p class="MsoPlainText">Please email your intention to submit to <a href="mailto:epnsugan@ntu.edu.sg">
epnsugan@ntu.edu.sg</a> <o:p></o:p></p>
<p class="MsoPlainText">More details from: <a href="https://www.apnns.org/ICONIP2020/">
https://www.apnns.org/ICONIP2020/</a><o:p></o:p></p>
<p class="MsoPlainText"><o:p> </o:p></p>
<p class="MsoPlainText">Topics of interests include random vector functional link (RVFL), echo state networks (ESN), liquid state networks (LSN), kernel ridge regression (KRR) with randomization, extreme learning machines (ELM), random forests (RF), Randomized
convolutional neural networks, Randomized internal representation learning, Regression, classification and time series analysis by randomization-based methods, Kernel methods (kernel ridge regression, kernel adaptive filters) with randomization, Feedforward,
recurrent, multilayer, deep and other structures with randomization, Ensemble learning with randomization, Moore-Penrose pseudo inverse, SVD and other solution procedures, Gaussian process regression, Randomization-based methods for large-scale problems with
and without kernels, Theoretical analysis of randomization-based methods, Comparative studies with competing methods with or without randomization, Applications of randomized methods in domains such as power systems, biomedical, finance, signal processing,
big data and all other relevant areas and so on. <o:p></o:p></p>
<p class="MsoPlainText"> <o:p></o:p></p>
<p class="MsoPlainText"><o:p> </o:p></p>
<p class="MsoPlainText">Thank you<o:p></o:p></p>
<p class="MsoPlainText">Suganthan<o:p></o:p></p>
<p class="MsoPlainText"><a href="https://www.ntu.edu.sg/home/epnsugan">https://www.ntu.edu.sg/home/epnsugan</a> <o:p></o:p></p>
<p class="MsoPlainText"> <a href="https://github.com/P-N-Suganthan">https://github.com/P-N-Suganthan</a><o:p></o:p></p>
<p class="MsoPlainText"><o:p> </o:p></p>
<p class="MsoPlainText"><o:p> </o:p></p>
<p class="MsoNormal"><o:p> </o:p></p>
</div>
<hr>
<p style="font-size:10pt; color:#808080;font-family: 'Arial';">CONFIDENTIALITY: This email is intended solely for the person(s) named and may be confidential and/or privileged. If you are not the intended recipient, please delete it, notify us and do not copy,
use, or disclose its contents. <br>
Towards a sustainable earth: Print only when necessary. Thank you. </p>
</body>
</html>