<div dir="ltr">
<p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt" id="gmail-docs-internal-guid-04bfdf93-7fff-9bc3-9292-5fece6e4c923"><span style="font-size:12pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"></span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">The Center for Biomedical Imaging and the Center for Advanced Imaging Innovation & Research (CAI</span><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="font-size:0.6em;vertical-align:super">2</span></span><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">R) at NYU Langone Health are looking for a highly motivated Research Scientist to join our interdisciplinary group and work on novel machine learning methods for medical imaging. The Research Scientist will develop new research directions, building upon our ongoing research on machine learning methods for accelerated MRI [1, 2, 3], breast cancer detection [4, 5, 6] and musculoskeletal [7] and brain image [8, 9, 10] analysis. We are especially interested in candidates who want to work on model explainability, robustness and uncertainty. </span></p><br><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Requirements include:</span><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Passion for research on deep learning for medical imaging.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- PhD in computer science, medical imaging, mathematics, physics, electrical engineering or a related discipline. An exception can be made for an extraordinary candidate without a PhD.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Advanced skills in Python and Tensorflow or PyTorch.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Advanced knowledge of machine learning and deep learning.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Advanced skills in using Linux.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Experience in working with medical imaging data is a big plus.</span></p><br><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Responsibilities will include:</span><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><br></span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Developing novel machine learning methods for medical imaging. <br></span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">- Collaborating with other research scientists, faculty members, postdocs and students at our center.</span></p><br><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Timeline, Salary, and Benefits</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Please apply no later than 3/29. </span></p><br><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">We expect the appointed candidate to start not later than the autumn of 2020. The initial appointment will be for a year, with an intention to renew further, depending on mutual agreement. We offer a competitive salary and benefits package. We welcome both domestic and international applicants.</span></p><br><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">To Apply</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Please send your application (CV and a short motivation letter) to Yvonne Lui (</span><a href="mailto:Yvonne.Lui@nyulangone.org" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">yvonne.lui@nyulangone.org</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">) and Krzysztof Geras (</span><a href="mailto:k.j.geras@nyu.edu" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">k.j.geras@nyu.edu</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">). Please use the string “[machine learning research scientist]” as the subject of the email.</span></p><br><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">About Us</span></p><p dir="ltr" style="line-height:1.2;text-align:justify;background-color:rgb(255,255,255);margin-top:0pt;margin-bottom:0pt;padding:0pt 0pt 15pt"><span style="font-size:10pt;font-family:Arial;color:rgb(51,51,51);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">The Center for Advanced Imaging Innovation & Research (CAI</span><span style="font-size:10pt;font-family:Arial;color:rgb(51,51,51);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span style="font-size:0.6em;vertical-align:super">2</span></span><span style="font-size:10pt;font-family:Arial;color:rgb(51,51,51);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">R), located in midtown Manhattan, is operated by the research arm of the radiology department of NYU Langone Health. The research division comprises approximately 130 full-time personnel dedicated to imaging research, development, and clinical translation. We are a highly collaborative group and work in interdisciplinary, matrixed teams that include engineers, scientists, clinicians, technologists, and industry experts. We encourage collaboration across research groups to promote creativity and nurture an environment conducive to breakthrough innovations at the forefront of biomedical research.</span></p><p dir="ltr" style="line-height:1.2;text-align:justify;background-color:rgb(255,255,255);margin-top:0pt;margin-bottom:0pt;padding:0pt 0pt 15pt"><span style="font-size:10pt;font-family:Arial;color:rgb(51,51,51);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">To learn more about our research center, visit </span><a href="https://cai2r.net" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">https://cai2r.net</span></a></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">References</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[1] </span><a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.26977" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Learning a variational network for reconstruction of accelerated MRI data</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. K. Hammernik et al. MRM, 2018.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[2] </span><a href="https://doi.org/10.1002/mrm.27355" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Assessment of the generalization of learned image reconstruction and the potential for transfer learning</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. F. Knoll et al. MRM, 2019.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[3] </span><a href="https://arxiv.org/pdf/1811.08839.pdf" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">fastMRI: An Open Dataset and Benchmarks for Accelerated MRI</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. J. Zbontar et al. 2018.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[4] </span><a href="https://github.com/nyukat/breast_cancer_classifier" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. N. Wu et al. IEEE TMI, 2019.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[5] </span><a href="https://arxiv.org/pdf/1906.02846.pdf" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Globally-Aware Multiple Instance Classifier for Breast Cancer Screening</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. Y. Shen et al. MLMI, 2019.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[6] </span><a href="https://github.com/nyukat/breast_density_classifier" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Breast density classification with deep convolutional neural networks</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. N. Wu et al. ICASSP, 2018.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[7] </span><a href="https://www.nature.com/articles/s41598-018-34817-6" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Segmentation of the proximal femur from MR images using deep convolutional neural networks</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. C. M. Deniz et al. Scientific Reports, 2018.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[8] </span><a href="https://arxiv.org/abs/1911.03740" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">On the design of convolutional neural networks for automatic detection of Alzheimer's disease</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. S. Liu et al. 2019.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[9] </span><a href="http://arxiv.org/abs/1911.05567" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">DARTS: DenseUnet-based Automatic Rapid Tool for brain Segmentation</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. A. Kaku et al. 2019.</span></p><p dir="ltr" style="line-height:1.38;text-align:justify;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">[10] </span><a href="https://www.ncbi.nlm.nih.gov/pubmed/29782993" style="text-decoration:none"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis</span></a><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">. Y. Wang et al. Neuroimage, 2018.</span></p>
</div>