<div dir="auto"><div>Good afternoon Professor Krichmar,</div><div dir="auto"><br></div><div dir="auto">Could you point me towards a recent, high quality review of SLAM algorithms and their performance on benchmarks?</div><div dir="auto"><br></div><div dir="auto">Thanks!</div><div dir="auto">Rylan<br><br><div class="gmail_quote" dir="auto"><div dir="ltr" class="gmail_attr">On Tue, Oct 8, 2019, 08:57 Jeff Krichmar <<a href="mailto:jkrichma@uci.edu">jkrichma@uci.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear Connectionists,<br>
<br>
These days it seems to be important to test new ideas against existing benchmarks. In the area of robot navigation, I am struggling to think of benchmarks that go beyond the typical SLAM benchmarks for accuracy. I am particularly interested in situations where the robot needs to adapt its navigation strategies based on perturbations or other stimuli. <br>
<br>
Does anyone have suggestions for benchmarks along these lines? <br>
<br>
Thank you,<br>
<br>
Jeff Krichmar<br>
Department of Cognitive Sciences<br>
2328 Social & Behavioral Sciences Gateway<br>
University of California, Irvine<br>
Irvine, CA 92697-5100<br>
<a href="mailto:jkrichma@uci.edu" target="_blank" rel="noreferrer">jkrichma@uci.edu</a><br>
<a href="http://www.socsci.uci.edu/~jkrichma" rel="noreferrer noreferrer" target="_blank">http://www.socsci.uci.edu/~jkrichma</a><br>
<br>
<br>
<br>
<br>
<br>
</blockquote></div></div></div>