<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=us-ascii">
<meta name="Generator" content="Microsoft Word 15 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
{font-family:Wingdings;
panose-1:5 0 0 0 0 0 0 0 0 0;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0cm;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph
{mso-style-priority:34;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:36.0pt;
margin-bottom:.0001pt;
mso-add-space:auto;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst
{mso-style-priority:34;
mso-style-type:export-only;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:36.0pt;
margin-bottom:.0001pt;
mso-add-space:auto;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle
{mso-style-priority:34;
mso-style-type:export-only;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:36.0pt;
margin-bottom:.0001pt;
mso-add-space:auto;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast
{mso-style-priority:34;
mso-style-type:export-only;
margin-top:0cm;
margin-right:0cm;
margin-bottom:0cm;
margin-left:36.0pt;
margin-bottom:.0001pt;
mso-add-space:auto;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
span.E-MailFormatvorlage17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;
mso-fareast-language:EN-US;}
@page WordSection1
{size:612.0pt 792.0pt;
margin:70.85pt 70.85pt 2.0cm 70.85pt;}
div.WordSection1
{page:WordSection1;}
/* List Definitions */
@list l0
{mso-list-id:1940217395;
mso-list-type:hybrid;
mso-list-template-ids:1038405122 67567617 67567619 67567621 67567617 67567619 67567621 67567617 67567619 67567621;}
@list l0:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level2
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level3
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
@list l0:level4
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level5
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level6
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
@list l0:level7
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Symbol;}
@list l0:level8
{mso-level-number-format:bullet;
mso-level-text:o;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:"Courier New";}
@list l0:level9
{mso-level-number-format:bullet;
mso-level-text:\F0A7;
mso-level-tab-stop:none;
mso-level-number-position:left;
text-indent:-18.0pt;
font-family:Wingdings;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="DE" link="#0563C1" vlink="#954F72">
<div class="WordSection1">
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">We are organizing a workshop with the title: “New Trends in Representation Learning with Knowledge Graphs” https://sites.google.com/view/kgrlfr-workshop/home @ ECML
PKDD 2019 http://ecmlpkdd2019.org/ (2019-09-16 to 2019-09-20 )<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">The ECML is the leading European Conference on Machine Learning.
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">The workshop day is 2019-09-16.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">Submission deadline: 2019-06-14. Please submit short papers, up to 6 pages. Accepted papers will be published in the conference proceedings. Selected short papers will
be encouraged to be submitted to a special issue of JWS with the topic of the workshop.<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">Best regards,
<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">Volker<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-family:"Arial",sans-serif;color:black">We invite the submission of papers on topics including, but not limited to:<o:p></o:p></span></p>
<ul style="margin-top:0cm" type="disc">
<li class="MsoListParagraphCxSpFirst" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Knowledge graph representations for relational reasoning<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Unsupervised learning of complex graphs over graph-structured data<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Neural/Statistical Relational Learning<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Integrating learning of expressive knowledge representation and flexible reasoning<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Exploring non-Euclidean spaces for knowledge graph representations<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Inference tasks for learned knowledge graph representations that require general-purpose reasoning<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Knowledge graph representations for industrial recommendation systems<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Decision modelling in personalized medicine with knowledge graph representations (e.g., decision support at the point of care in tumor boards)<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Visual scene graph modelling with the help of knowledge graphs.<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Knowledge graph representation to support natural language understanding.<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Knowledge Graphs for cognitive science<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Representation learning on time-dependent knowledge graphs<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Question answering and commonsense reasoning via knowledge graphs<o:p></o:p></span></li><li class="MsoListParagraphCxSpMiddle" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Knowledge graph representation learning models based on adversarial methods.<o:p></o:p></span></li><li class="MsoListParagraphCxSpLast" style="color:black;margin-left:0cm;mso-add-space:auto;mso-list:l0 level1 lfo1">
<span lang="EN-US" style="font-family:"Arial",sans-serif">Quantum Computing as a basis for scalable Knowledge graph representation learning.<o:p></o:p></span></li></ul>
<p class="MsoNormal"><span lang="EN-US" style="mso-fareast-language:EN-US"><o:p> </o:p></span></p>
</div>
</body>
</html>