<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<style type="text/css" style="display:none;"><!-- P {margin-top:0;margin-bottom:0;} --></style>
</head>
<body dir="ltr">
<div id="divtagdefaultwrapper" dir="ltr" style="font-size: 12pt; color: rgb(0, 0, 0); font-family: Calibri, Helvetica, sans-serif, EmojiFont, "Apple Color Emoji", "Segoe UI Emoji", NotoColorEmoji, "Segoe UI Symbol", "Android Emoji", EmojiSymbols;">
<p></p>
<p style="font-family:Calibri,Helvetica,sans-serif,serif,EmojiFont; font-size:16px">
<span style="color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif,serif,EmojiFont; font-size:13px">----------------------Second Call for Papers------------------------</span><wbr style="color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px"><span style="color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif,serif,EmojiFont; font-size:13px">------</span></p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
<br>
The 3rd Workshop on Tractable Probabilistic Modeling (TPM) @ ICML 2019, Long Beach, California, USA.</p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
<a href="https://sites.google.com/view/icmltpm2019/home" target="_blank" rel="nofollow noopener noreferrer" id="LPlnk823009" style="margin:0px; padding:0px; border:0px; color:rgb(102,17,204)" previewremoved="true">https://sites.google.com/view/<wbr>icmltpm2019/home</a></p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
------------------------------<wbr>------------------------------<wbr>----<br>
Important Dates<br>
**Paper submission deadline: April 30, 2019 AOE (UTC-12:00h)<br>
**Notification to authors: May 15, 2019<br>
**Camera ready version: May 31, 2019 AOE (UTC-12:00h)<br>
**Workshop Date: June 14/15, 2019 (TBA)</p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
------------------------------<wbr>------------------------------<wbr>----</p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
Tractable probabilistic modeling (TPM) is concerned with the inherent trade-off between the expressivity of the probabilistic models and the complexity of performing various types of inference on them, as well as learning them from data. Traditional topics
in this area include efficient learning of probabilistic models, exact inference, and approximate routines with guarantees. Relevant model classes include low- and bounded-treewidth PGMs, determinantal point processes, exchangeable probabilistic models, arithmetic
circuits, sum-product networks, cutset networks, probabilistic sentential decision diagrams, and more. Successful real-world applications of such models comprise: image classification, completion and generation, scene understanding, activity recognition, language
and speech modeling, bioinformatics, collaborative filtering, verification and diagnosis of physical systems.<br>
This year's workshop will focus especially on bringing together researchers working on the different fronts and communities of TPM. We especially encourage submissions highlighting the challenges and opportunities for tractable inference and modeling within
the rising field of probabilistic programming and the neural probabilistic modeling community, recently achieving impressive successes in many application fields.<br>
Here is a non-exhaustive list of possible venues. Any other work relevant to the TPM community will be highly appreciated.</p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
<br>
**Tractable inference with <b>neural probabilistic models</b><br>
**Challenges in tractable probabilistic programming<br>
**New tractable representations in discrete, continuous and hybrid domains<br>
**Tractable models and explainable AI<br>
**Learning algorithms for tractable probabilistic models<br>
**Theoretical and empirical analysis of tractable modeling<br>
**Approximate inference algorithms with guarantees on approximation quality<br>
**Applications of tractable probabilistic modeling<br>
------------------------------<wbr>------------------------------<wbr>----------------</p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
Submission Instructions:</p>
<p style="margin:1em 0px; padding:0px; border:0px; line-height:normal; color:rgb(34,34,34); font-family:Arial,Helvetica,sans-serif; font-size:13px">
**Recently published research papers can be submitted as they were accepted<br>
**Original papers (up to 8 pages, not including references) and abstracts (up to 2 pages, not including references) are required to follow the same style guidelines of ICML 2019<br>
All submissions must be electronic, in the above format and submitted through EasyChair (link below).<br>
Reviewing for TPM 2019 is single-blind and we also encourage authors to share code and data for reproducibility.<br>
<br>
Submission Link: <a href="https://easychair.org/conferences/?conf=tpm2019" target="_blank" rel="nofollow noopener noreferrer" id="LPlnk836978" style="margin:0px; padding:0px; border:0px; color:rgb(102,17,204)" previewremoved="true">https://easychair.org/<wbr>conferences/?conf=tpm2019</a><br>
------------------------------<wbr>------------------------------<wbr>----------------<br>
Organizers:<br>
Daniel Lowd (University of Oregon)<br>
Tahrima Rahman (University of Texas, Dallas)<br>
Antonio Vergari (Max-Planck-Insitute for Intelligent Systems, University of California, Los Angeles)<br>
Alejandro Molina (TU Darmstadt)<br>
Pedro Domingos (University of Washington)</p>
<p></p>
</div>
</body>
</html>