<div dir="ltr"><span class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-im"><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt" id="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-m_-3424256783368247622gmail-m_7078047141215549601m_-1398293863336053597gmail-docs-internal-guid-d8ddf604-5463-eeae-68b0-d06c53d4186f"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">CALL FOR CONTRIBUTIONS</span></p></span><div class="gmail_quote"><div dir="ltr"><div class="gmail_quote"><div dir="ltr"><span class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-im"><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">The ICML 2019 <span class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-il"><span class="m_-6794981512017024250gmail-il">Workshop</span></span> on Automated Machine Learning (<span class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-il"><span class="m_-6794981512017024250gmail-il">AutoML</span></span> 2019)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Collocated with ICML in Long Beach, June 14 or 15 (TBD), 2019</span></p></span><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Web: </span><a href="http://icml2019.automl.org" style="text-decoration:none" target="_blank"><span style="font-size:10pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">http://icml2019.<span class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-il"><span class="m_-6794981512017024250gmail-il">automl</span></span>.org</span></a></p><div><div class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-im"><br><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">----------------------------------------------------------------</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><b><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">Important Dates:</span></b></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"> Submission deadline: 22 April 2019, 11:59pm UTC-12 (April 22 anywhere in the world)</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"> Notification: 17 May 2019</span></p><p dir="ltr" style="line-height:1.38;margin-top:0pt;margin-bottom:0pt"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap">----------------------------------------------------------------</span></p><br><p style="direction:ltr;text-align:justify"><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><span class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-il"><span class="m_-6794981512017024250gmail-il">Workshop</span></span> topic:</span><span style="font-size:10pt;font-family:Arial;color:rgb(0,0,0);background-color:transparent;font-weight:700;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline;white-space:pre-wrap"><img src="https://lh5.googleusercontent.com/e2UGQS5JW7pYoz14ZFR02S25L5lUe6OWBvbClHhEpJFifnlRF9SoIYi_ebEVpNNUen2CB2U3BEVQy1TFVgDy2DBFXGgpjggWJV1-7f_uH3AjHIpAnZ-GYf7TWZYfC327eo8f__Jj" style="border-color:currentcolor;border-style:none;border-width:medium" class="m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-m_-3424256783368247622gmail-CToWUd m_-6794981512017024250gmail-m_3436729175069498205m_5046605208834272746gmail-CToWUd m_-6794981512017024250gmail-CToWUd" width="1" height="1"></span><br>Machine
learning has achieved considerable successes in recent years, but this
success often relies on human experts, who construct appropriate
features, design learning architectures, set their hyperparameters, and
develop new learning algorithms. Driven by the demand for off-the-shelf
machine learning methods from an ever-growing community, the research
area of <span style="font-style:italic"><span class="m_-6794981512017024250gmail-il">AutoML</span></span> targets the progressive automation of machine learning aiming to make effective methods available to everyone. The <span class="m_-6794981512017024250gmail-il">workshop</span> targets a broad audience ranging from core machine learning researchers in different fields of ML connected to <span class="m_-6794981512017024250gmail-il">AutoML</span>,
such as neural architecture search, hyperparameter optimization,
meta-learning, and learning to learn, to domain experts aiming to apply
machine learning to new types of problems.</p><p style="direction:ltr">We invite submissions on the topics of:</p><ul style="direction:ltr"><span class="m_-6794981512017024250gmail-im"><li>Model selection, hyper-parameter optimization, and model search</li></span><li>Neural architecture search</li><li>Meta-learning and transfer learning</li><li>Learning to learn new algorithms and strategies</li><li>Automation of any element of the ML pipeline, including:<ul><li>feature extraction / construction</li><li>data cleaning</li><span class="m_-6794981512017024250gmail-im"><li>generation of workflows / workflow reuse</li><li>problem "ingestion" (from raw data and miscellaneous formats)</li><li>acquisition of new data (active learning, experimental design)</li></span><li>report generation (providing insight on automated data analysis)</li><span class="m_-6794981512017024250gmail-im"><li>selection of evaluation metrics / validation procedures</li><li>selection of algorithms under time/space/power constraints</li></span><li>construction of fair and unbiased machine learning models</li><li>semi-supervised and unsupervised machine learning</li></ul></li><li>Extending the scope of <span class="m_-6794981512017024250gmail-il">AutoML</span> towards automated data science</li><li>Human-in-the-loop approaches for <span class="m_-6794981512017024250gmail-il">AutoML</span></li><li>Demos of existing <span class="m_-6794981512017024250gmail-il">AutoML</span> systems</li><li>Robustness of <span class="m_-6794981512017024250gmail-il">AutoML</span> systems (w.r.t. randomized algorithms, data, hardware etc.)</li><li>Hyperparameter agnostic algorithms</li></ul><p style="direction:ltr">We
welcome submissions up to 6 pages in JMLR format (+ references). We
strongly encourage attachments of code to foster reproducibility;
reproducibility of results and easy availability of code will be taken
into account in the decision making process. All accepted papers will be
presented as posters. We may invite the best 2-3 papers for an oral
plenary presentation. Unless indicated by the authors, we will provide
PDFs of all accepted papers on <a href="http://icml2019.automl.org/" target="_blank">http://icml2019.<span class="m_-6794981512017024250gmail-il">automl</span>.org/</a>. There will be no archival proceedings. For submission details please see the <a href="https://sites.google.com/view/automl2019icml/submission" target="_blank">submission page</a>. <br></p><h3 style="direction:ltr">Confirmed Keynote Speakers</h3><ul style="direction:ltr"><li><span style="font-weight:bold">Rachel Thomas</span></li><li><span style="font-weight:bold">Raquel Urtasun</span></li><li><span style="font-weight:bold">Charles Sutton</span></li></ul>
<h3 style="direction:ltr">Tentative Dates</h3><ul style="direction:ltr"><li>April 1st: submission system opens</li><li>April 22nd: submission deadline</li><li>May 17th: notification</li><li>June 14th or 15th: <span class="m_-6794981512017024250gmail-il">workshop</span> day</li></ul><div><br></div></div></div></div></div>
</div>
</div></div>