<div dir="ltr">
<div dir="ltr"><div dir="ltr"><div dir="ltr">[Apologies for cross-postings]<br><br>Dear colleagues,<br><br>It is our pleasure to introduce the release of the python package <a href="https://github.com/Hananel-Hazan/bindsnet" target="_blank">BindsNET </a>and its companion paper in Frontiers in Bioinformatics “<a href="http://journal.frontiersin.org/article/10.3389/fninf.2018.00089" target="_blank">BindsNET: A Machine Learning-Oriented Spiking Neural Networks Library in Python</a>”.<br><br>BindsNET
is a python package to simulate a spiking neuronal network using a GPU.
The framework is easy and well in line with Python, NumPy and PyTorch
standard that runs on CPU’s/GPU’s. BindsNet will serve both the novel
researcher and the seasoned programmer wanting to perform rapid
prototyping prior to diving into hardware implementation.</div><div dir="ltr"><br></div><div dir="ltr">
To achieve maximum performance and flexibility, BindsNET re-purposes
the powerful and flexible <a href="http://pytorch.org/" target="_blank">PyTorch</a> library. By wrapping around PyTorch
we avoid "reinventing the wheel" by reusing
it's function and sub-modules for the spiking neuronal networks computational needs.
</div><div dir="ltr"><br></div><div dir="ltr">For more details on performance, usability and code examples please see the
Frontier <a href="http://journal.frontiersin.org/article/10.3389/fninf.2018.00089" target="_blank">paper</a> as well in the GitHub <a href="https://github.com/Hananel-Hazan/bindsnet" target="_blank">repository</a>.<br></div></div><div dir="ltr"><br></div><div dir="ltr">BindsNet welcomes researcher, students and neuro-scientists to both utilize and contribute to this leading-edge toolbox.<br><div dir="ltr"><br><b>Happy spiking</b><br><br><br>Thanks</div><div dir="ltr"><br></div><div dir="ltr">Hananel Hazan</div><div dir="ltr">Postdoctoral Research Associate<br>BINDS Lab, UMass Amherst, USA<br><a href="http://Hananel.Hazan.org.il" target="_blank">http://Hananel.Hazan.org.il</a></div></div></div>
</div>