<html><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><meta http-equiv="Content-Type" content="text/html; charset=utf-8" class=""><div style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div class=""><div class="">** Apologies for cross-posting** CFP [Deadline extended]:</div><div class=""><br class=""></div></div><div class="">Special Session on "Deep learning for brain data"</div><div class="">2019 International Joint Conference on Neural Networks (IJCNN)</div><div class="">July 14-19 2019, Budapest, Hungary</div><div class=""><a href="https://sites.google.com/view/dl4brain" class="">https://sites.google.com/view/dl4brain</a></div><div class=""><br class=""></div><div class="">Important Dates:</div><div class=""><div class="">Paper submission: EXTENDED to 15 January 2019</div><div class="">Notification of acceptance: 28 February 2019</div></div><div class=""><br class=""></div><div class="">Aims and Scope:</div><div class="">Structural and Functional techniques to investigate brain, such as MRI, CT scan, fMRI, EEG, PET, are nowadays widely used both for basic research (for instance on cognition) or for clinical purposes (for instance diagnosis of brain based disorders). In the past two decades, scientists have tried to use these techniques to study brain functioning, to investigate human cognition, to assist the diagnosis of brain-based disorders, and to try to predict the prognosis of patients.</div><div class="">Unfortunately, the attempts to find a technique that achieve results with the potential to be translated to daily practice have not succeeded due to the presence of complex, distributed and subtle individual differences that are difficult to detect using standard statistical techniques. </div><div class="">Very recently, this research field witnessed an exponential increased interest in the application of Machine Learning (ML) methods, and in particular of Deep Learning (DL), to brain data to support researchers in the study of cognition and to support clinicians in the diagnosis and prognosis of brain-based disorders. To date, applications of ML/DL techniques to brain data is still an under-investigated field of research.</div><div class=""><br class=""></div><div class="">The aim of this special session is twofold: first, it provides a point of contact between scientists and researchers from the machine learning and medical communities (medicine, neuroscience, psychology, psychophysiology, etc.), encouraging a multidisciplinary view on open problems.</div><div class="">Second, it provides a forum to present original ideas, theories and novel applications of ML/DL to brain data, and to find solutions to open issues.</div><div class="">Topics that are of interest to this session include, but are not limited to:</div><div class="">- Presentation of new structural and functional brain data databases;</div><div class="">- Computer vision applied to MRI, fMRI, DTI, PET;</div><div class="">- Time series analysis applied to EEG;</div><div class="">- New advancement in Deep Learning algorithms for brain data;</div><div class="">- Application of Deep Learning to brain data to study cognition (e.g., attention, language, memory, decision making, problem solving, spatial abilities);</div><div class="">- Application of Deep Learning to brain data for clinical diagnosis and prognosis of psychiatric and neurologic disorders;</div><div class="">- Application of Deep Learning to brain data for identification of risk factors of neurologic and psychiatric disorders;</div><div class="">- Application of Deep Learning to evaluate the impact of inter-scanner variability on the results;</div><div class="">- Multicentric studies on brain MRI data;</div><div class="">- Integrating functional and structural information to enhance clinical diagnosis and prognosis;</div><div class="">- Integrating functional and structural information to enhance the understanding of cognitive processes;</div><div class=""><br class=""></div><div class="">Submission:</div><div class="">- For paper guidelines please visit <a href="https://www.ijcnn.org/paper-submission-guidelines" class="">https://www.ijcnn.org/paper-submission-guidelines</a></div><div class="">- For submissions please select the single topic "S10. Deep learning for brain data" from the "S. SPECIAL SESSIONS" category as the main research topic on <a href="https://ieee-cis.org/conferences/ijcnn2019/upload.php" class="">https://ieee-cis.org/conferences/ijcnn2019/upload.php</a></div><div class=""><br class=""></div><div class="">Organisers:</div><div class="">- Nicolò Navarin, University of Padova, Italy</div><div class="">- Cristina Scarpazza, University of Padova, Italy</div><div class="">- Merylin Monaro, University of Padova, Italy</div><div class="">For any enquire, please write to: nnavarin [at] <a href="http://math.unipd.it/" class="">math.unipd.it</a>, cristina.scarpazza [at] <a href="http://unipd.it/" class="">unipd.it</a> or merylin.monaro [at] <a href="http://unipd.it/" class="">unipd.it</a></div><div class=""><br class=""></div><div class="">
<div dir="auto" style="caret-color: rgb(0, 0, 0); color: rgb(0, 0, 0); letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration: none; word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div style="color: rgb(0, 0, 0); letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px; word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div style="word-wrap: break-word; -webkit-nbsp-mode: space; line-break: after-white-space;" class=""><div style="color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class="">—<br class="">Nicolò Navarin, PhD<br class=""><br class="">Assistant Professor<br class="">University of Padova - Department of Mathematics</div><div style="color: rgb(0, 0, 0); font-family: Helvetica; font-size: 12px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; word-spacing: 0px; -webkit-text-stroke-width: 0px;" class="">via Trieste 63, 35121 Padova - Italy</div></div></div></div>
</div>
<br class=""></div></body></html>