<div dir="ltr"><div class="gmail_quote"><div dir="ltr"><div dir="ltr"><div><div>Dear all,</div><div><br></div><div>may I kindly draw your attention to our most recent paper which contains several new algorithms to address neuronal population coding using spike train distances:</div><div><br></div><div>Satuvuori E, Mulansky M, Daffertshofer A, Kreuz T:</div><div><a href="https://www.sciencedirect.com/science/article/pii/S0165027018302747" target="_blank">Using spike train distances to identify the most discriminative neuronal subpopulation</a></div><div>JNeurosci Methods, 308, 354 [<a href="https://www.sciencedirect.com/science/article/pii/S0165027018302747" target="_blank">PDF</a>] and arXiv [<a href="https://arxiv.org/pdf/1805.10892.pdf" target="_blank">PDF</a>] (2018). </div><div><br></div><div>For the abstract see below.<br></div><div><br></div><div><div><div>This paper is part of the dissertation "<a href="http://dare.ubvu.vu.nl/bitstream/handle/1871/55855/abstract%20english.pdf?sequence=4" target="_blank">Spike train distances and neuronal coding</a>" of my PhD student Eero Satuvuori whose full thesis can now be found <a href="http://dare.ubvu.vu.nl/bitstream/handle/1871/55855/abstract%20english.pdf?sequence=4" target="_blank">here</a>. Besides some original parts and the paper cited above it also contains these recent works:</div><div><br></div><div><p style="color:rgb(0,0,0);margin-top:0pt;margin-bottom:0pt"><font face="arial, helvetica, sans-serif">Satuvuori E, Kreuz T:<br>Which spike train distance is most suitable for distinguishing rate and temporal coding?</font></p><p style="color:rgb(0,0,0);margin-top:0pt;margin-bottom:0pt"><span style="font-family:arial,helvetica,sans-serif">JNeurosci Methods </span><span style="font-family:arial,helvetica,sans-serif;font-weight:bold">299</span><span style="font-family:arial,helvetica,sans-serif">, 22 [</span><a href="https://ac.els-cdn.com/S0165027018300372/1-s2.0-S0165027018300372-main.pdf?_tid=spdf-55c0f954-726f-4956-8fa2-7c74fc998aac&acdnat=1519858583_7f3ae963c1d55b2a063399b53f8b1a4e" style="font-family:arial,helvetica,sans-serif;color:rgb(0,0,255)" target="_blank">PDF</a><span style="font-family:arial,helvetica,sans-serif">] and arXiv [</span><a href="https://arxiv.org/pdf/1708.07508.pdf" style="font-family:arial,helvetica,sans-serif;color:rgb(0,0,255)" target="_blank">PDF</a><span style="font-family:arial,helvetica,sans-serif">] (2018).</span></p><p style="color:rgb(0,0,0);margin-top:0pt;margin-bottom:0pt"><br></p></div></div><div><font face="arial, helvetica, sans-serif"><span style="color:rgb(0,0,0)">Kreuz T, Satuvuori E, Pofahl M, Mulansky M</span><span lang="en-us" style="color:rgb(0,0,0)"></span><span style="color:rgb(0,0,0)">:</span><br style="color:rgb(0,0,0)"><span style="color:rgb(0,0,0)">Leaders and followers: Quantifying consistency in spatio-temporal propagation patterns</span><br style="color:rgb(0,0,0)"><span lang="en-us" style="color:rgb(0,0,0)"></span><span style="color:rgb(0,0,0)">New J. Phys., </span><span style="color:rgb(0,0,0);font-weight:bold">19</span><span style="color:rgb(0,0,0)">, 043028 [</span><a href="https://doi.org/10.1088/1367-2630/aa68c3" style="color:rgb(0,0,255)" target="_blank">PDF</a><span style="color:rgb(0,0,0)">] and arXiv [</span><a href="https://arxiv.org/pdf/1610.07986v4.pdf" style="color:rgb(0,0,255)" target="_blank">PDF</a><span style="color:rgb(0,0,0)">] (2017).</span><br></font></div><div><font face="arial, helvetica, sans-serif"><span style="color:rgb(0,0,0)"><br></span></font></div><div><div><p style="color:rgb(0,0,0);margin-top:0pt;margin-bottom:0pt"><font face="arial, helvetica, sans-serif">Satuvuori E, Mulansky M<span lang="en-us"></span>, Bozanic N, Malvestio I, Zeldenrust F, Lenk K, Kreuz T:<br>Measures of spike train synchrony for data with multiple time-scales</font></p><p style="color:rgb(0,0,0);margin-top:0pt;margin-bottom:0pt"><font face="arial, helvetica, sans-serif">JNeurosci Methods <span style="font-weight:bold">287</span>, 25 [<a href="https://doi.org/10.1016/j.jneumeth.2017.05.028" style="color:rgb(0,0,255)" target="_blank">PDF</a>] and arXiv [<a href="https://arxiv.org/pdf/1702.05394.pdf" style="color:rgb(0,0,255)" target="_blank">PDF</a>] (2017).</font></p></div><div><br></div></div></div><div><div>All the best,</div><div>Thomas Kreuz</div></div><div><br></div><div><br></div><div>PS:</div><div><br></div><div><div>Satuvuori E, Mulansky M, Daffertshofer A, Kreuz T:</div><div><a href="https://www.sciencedirect.com/science/article/pii/S0165027018302747" target="_blank">Using spike train distances to identify the most discriminative neuronal subpopulation</a></div><div>JNeurosci Methods, 308, 354 [<a href="https://www.sciencedirect.com/science/article/pii/S0165027018302747" target="_blank">PDF</a>] and arXiv [<a href="https://arxiv.org/pdf/1805.10892.pdf" target="_blank">PDF</a>] (2018). </div></div></div><div dir="ltr"><br class="m_4635358431086904759m_-2823944801078955273gmail-Apple-interchange-newline"></div><div>Abstract:</div><div><br></div><div>Background</div><div>Spike trains of multiple neurons can be analyzed following the summed population (SP) or the labeled line (LL) hypothesis. Responses to external stimuli are generated by a neuronal population as a whole or the individual neurons have encoding capacities of their own. The SPIKE-distance estimated either for a single, pooled spike train over a population or for each neuron separately can serve to quantify these responses.</div><div><br></div><div>New method</div><div>For the SP case we compare three algorithms that search for the most discriminative subpopulation over all stimulus pairs. For the LL case we introduce a new algorithm that combines neurons that individually separate different pairs of stimuli best.</div><div><br></div><div>Results</div><div>The best approach for SP is a brute force search over all possible subpopulations. However, it is only feasible for small populations. For more realistic settings, simulated annealing clearly outperforms gradient algorithms with only a limited increase in computational load. Our novel LL approach can handle very involved coding scenarios despite its computational ease.</div><div><br></div><div>Comparison with existing methods</div><div>Spike train distances have been extended to the analysis of neural populations interpolating between SP and LL coding. This includes parametrizing the importance of distinguishing spikes being fired in different neurons. Yet, these approaches only consider the population as a whole. The explicit focus on subpopulations render our algorithms complimentary.</div><div><br></div><div>Conclusions</div><div>The spectrum of encoding possibilities in neural populations is broad. The SP and LL cases are two extremes for which our algorithms provide correct identification results.</div><div><br></div><div><br></div><div><br></div><div><br></div>-- <br><div dir="ltr" class="m_4635358431086904759m_-2823944801078955273gmail_signature"><div dir="ltr">Institute for complex systems, CNR<br>Via Madonna del Piano 10<br>50119 Sesto Fiorentino (Italy)<br>Tel: <span></span>+39-349-0748506<br>Email: <span></span><a href="mailto:thomas.kreuz@cnr.it" target="_blank">thomas.kreuz@cnr.it</a><br>Webpage: <a rel="nofollow" href="http://www.fi.isc.cnr.it/users/thomas.kreuz/" target="_blank">http://www.fi.isc.cnr.it/users/thomas.kreuz/</a></div></div></div></div>
</div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">Institute for complex systems, CNR<br>Via Madonna del Piano 10<br>50119 Sesto Fiorentino (Italy)<br>Tel: <span></span>+39-349-0748506<br>Email: <span></span><a href="mailto:thomas.kreuz@cnr.it" target="_blank">thomas.kreuz@cnr.it</a><br>Webpage: <a rel="nofollow" href="http://www.fi.isc.cnr.it/users/thomas.kreuz/" target="_blank">http://www.fi.isc.cnr.it/users/thomas.kreuz/</a></div></div></div>