<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=utf-8">
</head>
<body text="#000000" bgcolor="#FFFFFF">
**************************************************************************<br>
Due to a number of requests, we have decided to apply an extension
deadline for papers submission up to <b>October 7</b>, 2018 (11:59
pm CST).<br>
Apologies for the wide distribution of this message. This is the
first (and final!) announcement for MLESP2018
(<a class="moz-txt-link-freetext" href="https://bit.ly/2xNnPmp">https://bit.ly/2xNnPmp</a>).<br>
**************************************************************************<font
size="-1"> </font>
<div align="center">_________________________________ <br>
<br>
</div>
<div align="center"><b>The 1st International Workshop on Machine
Learning for EEG Signal Processing (MLESP 2018) </b><br>
Madrid, Spain, December 3-6, 2018 <br>
in conjunction with the IEEE International Conference on
Bioinformatics and Biomedicine <br>
<font color="#3333ff"><a class="moz-txt-link-freetext"
href="http://orienta.ugr.es/bibm2018/">http://orienta.ugr.es/bibm2018/</a></font><br>
</div>
<div align="center">_________________________________ <br>
</div>
<br>
Overview <br>
EEG signal processing involves the analysis and treatment of the
electrical activity of the brain measured with
Electroencephalography, or EEG, in order to provide useful
information on which decisions can be made. The recent advances in
signal processing and machine learning for EEG data processing have
brought an impressive progress to solve several practical and
challenging problems in many areas such as healthcare, biomedicine,
biomedical engineering, BCI and biometrics. The aim of this workshop
is to present and discuss the recent advances in machine learning
for EEG signal analysis and processing. We are inviting original
research work, as well as significant work-in-progress, covering
novel theories, innovative methods, and meaningful applications that
can potentially lead to significant advances in EEG data analytics.
This workshop is an opportunity to bring together academic and
industrial scientists to discuss the recent advances. <br>
<br>
The topics of interest include but not limited to: <br>
• EEG signal processing and analysis <br>
• Time-frequency EEG signal analysis <br>
• Signal processing for EEG Data <br>
• EEG feature extraction and selection <br>
• Machine learning for EEG signal processing <br>
• EEG classification and clustering <br>
• EEG abnormalities detection (e.g. Epileptic seizure, Alzheimer's
disease, etc.) <br>
• Machine learning in EEG Big Data <br>
• Deep Learning for EEG Big Data <br>
• Neural Rehabilitation Engineering <br>
• Brain-Computer Interface <br>
• Neurofeedback <br>
• Biometrics with EEG data <br>
• Related applications <br>
<br>
Program Chair: <br>
• Assoc. Prof., Larbi Boubchir (LIASD - University of Paris 8,
France) <br>
<br>
Program Committee: <br>
• Prof. Boubaker Daachi (LIASD - University of Paris 8, France) <br>
• Prof. Mohamad Sawan (Polytechnique Montréal, Canada) <br>
• Prof. Geraldine Boylan (University College Cork, Ireland) <br>
• Prof. Lei Ding (University of Oklahoma, USA) <br>
<br>
Important Dates: <br>
• <strike>Sept. 30, 2018</strike> <font color="#ff0000">Oct. 7,
2018</font> (11:59 pm CST): Due date for full workshop papers
submission <br>
• Oct. 27, 2018: Notification of paper acceptance to authors <br>
• Nov. 15, 2018: Camera-ready of accepted papers <br>
• Dec. 3-6, 2018: Workshops <br>
<br>
Paper Submission: <br>
• Please submit a full-length paper (up to 8 page IEEE 2-column
format) or short paper (3-6 pages) through the online submission
system. You can download the format instruction here: <a
class="moz-txt-link-freetext"
href="http://www.ieee.org/conferences_events/conferences/publishing/templates.html">http://www.ieee.org/conferences_events/conferences/publishing/templates.html</a><br>
• Electronic submissions in PDF format are required. <br>
• Online Submission: <a class="moz-txt-link-freetext"
href="https://wi-lab.com/cyberchair/2018/bibm18/">https://wi-lab.com/cyberchair/2018/bibm18/</a>
<br>
<br>
Publication: <br>
All accepted papers will be published in the BIBM proceedings and
IEEE Xplore Digital Library. <br>
<br>
Journal Special Issue: <br>
Selected high-quality papers will be invited for publication in a
special issue in highly respected journal. <br>
<br>
Contact: <br>
Please email workshop chair: Larbi Boubchir
(larbi.boubchir[at]ai.univ-paris8.fr) <br>
<p>Please find the call for papers and more information at the
workshop webpage:<br>
<font color="#3333ff"><a
href="http://www.ai.univ-paris8.fr/%7Eboubchir/Workshop/MLESP2018/home.htm"
target="_newtab">http://www.ai.univ-paris8.fr/~boubchir/Workshop/MLESP2018/home.htm</a></font></p>
<div class="moz-signature">-- <br>
<small><span style="color: rgb(102, 102, 102);">_____________________________________________________</span><br
style="color: rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);">Larbi Boubchir, PhD,
SMIEEE</span><br style="color: rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);">Associate Professor</span><br
style="color: rgb(102, 102, 102);">
<br style="color: rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);">LIASD - University of
Paris 8</span><br style="color: rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);">2 rue de la Liberté,
93526
Saint-Denis, France</span><br style="color: rgb(102, 102,
102);">
<span style="color: rgb(102, 102, 102);">Tel. (+33) 1 49 40 67
95</span><br style="color: rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);">Email.
<a class="moz-txt-link-abbreviated" href="mailto:larbi.boubchir@ai.univ-paris8.fr">larbi.boubchir@ai.univ-paris8.fr</a></span><br style="color:
rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);"><a class="moz-txt-link-freetext" href="http://www.ai.univ-paris8.fr/~boubchir/">http://www.ai.univ-paris8.fr/~boubchir/</a></span><br
style="color: rgb(102, 102, 102);">
<span style="color: rgb(102, 102, 102);">_____________________________________________________</span></small><br>
</div>
</body>
</html>