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A B S T R A C T

Autism and schizophrenia share overlapping genetic etiology, common changes in brain structure and common
cognitive deficits. A number of studies using resting state fMRI have shown that machine learning algorithms can
distinguish between healthy controls and individuals diagnosed with either autism spectrum disorder or schi-
zophrenia. However, it has not yet been determined whether machine learning algorithms can be used to dis-
tinguish between the two disorders. Using a linear support vector machine, we identify features that are most
diagnostic for each disorder and successfully use them to classify an independent cohort of subjects. We find both
common and divergent connectivity differences largely in the default mode network as well as in salience, and
motor networks. Using divergent connectivity differences, we are able to distinguish autistic subjects from those
with schizophrenia. Understanding the common and divergent connectivity changes associated with these dis-
orders may provide a framework for understanding their shared cognitive deficits.

1. Introduction

Clinical similarities between schizophrenia (SZ) and autism spec-
trum disorder (ASD) were recognized even in the earliest descriptions of
the two disorders (Kolvin, 1971; Rutter, 1972). The first reported cases
of autism were initially thought to be a form of infantile SZ. In fact, the
name Autism, which comes from the Greek word “auto”meaning “self”,
was originally used to describe a lack of interest in social interaction in
individuals with schizophrenia (Bleuler, 1951). Later the term became
associated with children who exhibited a similar lack of interest in
social interaction and the spectrum of disorders we now call ASD. The
young age of onset of clinical symptoms and lack of psychosis in ASD
were later recognized as the main features that separated SZ from ASD.
While they are now recognized as distinct disorders, their shared cog-
nitive symptoms include impairments in social interaction and com-
munication, deficits in processing emotion (Wallace et al., 2011; Brune,
2003; Morrison et al., 1998), theory of mind abilities (Pilowsky et al.,
2000), language skills (Magaud et al., 2010) and learning (Titone et al.,
2004), and the inability to suppress irrelevant information (Bird et al.,
2006; Cutting et al., 1987). There are currently no medical tests
available for either disorder. According to the diagnostic guidelines
contained in the Diagnostic and Statistical Manual of Mental Disorders
(DSM), many patients may qualify as having either condition (Solomon
et al., 2011; Konstantareas and Hewitt, 2001). Therefore, there is
considerable interest in identifying reliable biomarkers.

Aberrant brain connectivity is strongly implicated in both disorders,
as many of the genes implicated in ASD and SZ are involved in devel-
oping both long-range projections between brain areas as well as short-
range synaptic connections (Crespi et al., 2010). Comparative studies
aimed at understanding the genetic etiological relationship between the
two disorders have identified some evidence for overlapping etiology
and some evidence for diametric etiology (resulting from reciprocal
alterations to common risk factors). While there is strong evidence for
genetic risk factors and heritability, overlapping epigenetic mechanisms
are now recognized as potentially playing a vital role in pathogenesis
(McCarthy et al., 2014; see Persico and Bourgeron, 2006, Roth et al.,
2009 for reviews in ASD and schizophrenia respectively). The resulting
cognitive deficits observed in both disorders are believed to be caused
by altered communication between brain areas. However, studies
aimed at identifying the regions of altered connectivity have yielded
many conflicting results and failed replications. The large majority of
such studies have made use of resting state functional magnetic re-
sonance imaging (fMRI) because of its ease of collection and the ability
to make measurements of large-scale functional connectivity across the
brain. Functional connectivity refers to the temporal correlation be-
tween activity in different brain regions often interpreted as an in-
dication of interaction between them. Both disorders are associated
with decreases in interhemispheric connectivity (SZ: Venkataraman
et al., 2012; ASD: Anderson et al., 2011a), particularly in sensory re-
gions and alterations in connectivity between frontal and posterior
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regions in the parietal lobe and occipital cortex (SZ: Venkataraman
et al., 2012; ASD: Cherkassky et al., 2006; Just et al., 2007). Both have
been associated with changes in connectivity within the default mode
network (DMN). However, in some studies, increases rather than de-
creases in inter-regional functional connectivity are reported and others
fail to find significant regional differences (see Anderson, 2014 for re-
view in ASD and Fornito et al., 2012 for SZ). Inconsistencies in study
outcomes may reflect methodological differences, and/or differences in
patient sub-populations (age, sex, IQ, medication, and/or disease se-
verity and duration), but also highlight the variability in these patient
populations and the difficulty of characterizing either disorder by
changes in connectivity between any one or two regions.

Where studies of regional changes in connectivity have yielded in-
consistent results, studies using whole-brain measures of functional
connectivity, in combination with machine learning algorithms, have
demonstrated that multivariate patterns of connectivity can success-
fully distinguish patients from healthy controls (Shen et al., 2010;
Anderson et al., 2011b; Du et al., 2012; Nielsen et al., 2013;
Arbabshirani et al., 2014; Plitt et al., 2015). Using a multivariate
classification approach, a recent study aimed at identifying biomarkers
specifically for ASD found that application of their ASD model to other
disorders was moderately successful in identifying SZ patients from
healthy controls, but not those with attention-deficit hyperactivity
disorder (ADHD) or major depressive disorder (Yahata et al., 2016).
This suggests that common cognitive deficits in the two disorders may
be accompanied by common changes in connectivity. Studies designed
to make direct comparisons between ASD and SZ may identify di-
vergent features that make the two disorders unique, which can aid in
the development of customized interventions (Sasson et al., 2011).
However, to our knowledge no previous studies have directly compared
patterns of connectivity changes in ASD from those in SZ. Furthermore,
it is unknown whether machine learning algorithms can be used to
differentiate between the two disorders. In this study, we apply graph
theoretical techniques to resting state brain activity in autistic and
schizophrenic patient populations, building whole-brain models of ef-
fectivity connectivity between brain regions over time. Then, using
supervised machine learning in combination with a feature selection
algorithm, we identify features that are most diagnostic for each. We
cross-validate the resulting machine learning models on independent
training-naive data sets to determine if they generalize outside the
training data sets. Finally, we identify changes in effective connectivity
that are common to both ASD and SZ and show that their divergent
features can be used to successfully classify autistic subjects from those
diagnosed with schizophrenia.

2. Materials and methods

2.1. Data

Resting state data for subjects with SZ was archived by the Center
for Biomedical Research Excellence (COBRE) and obtained from http://
fcon_1000.projects.nitrc.org/indi/retro/cobre.html. The data set in-
cluded 146 subjects ranging in age between 18 and 65 (72 SZ mean
age= 38.17; SD=13.89; 58 males and 74 controls mean age= 35.82;
SD=11.58; 51 males). This data set was used to train a support vector
machine (SVM) classifier. A separate data set was used as a testing cross
validation set. The classifier was never trained on the testing cross
validation data sets. Testing data was collected at the Rutgers
University Brain Imaging Center as part of another study (not yet
published). It included 10 subjects ranging in age from 19 to 54 years
old (5 SZ mean age=42.6; SD=11.59; 2 males and 5 controls mean
age= 20; SD=1.22; 2 males) with two resting state scans each.

Resting state data for autistic spectrum disorder subjects was ar-
chived by the Autism Brian Imaging Exchange (ABIDE) and obtained
from http://fcon_1000.projects.nitrc.org/indi/abide. We used the
ABIDE I University of Utah School of Medicine (USM) data set. It

consisted of 101 subjects between the ages of 8 and 50 (58 ASD
11–50 years old; mean= 22.65; SD=7.73 and 43 controls 8–39 years
old; mean=21.36; SD=7.64). As the COBRE data set did not include
any individuals below 18 years of age, we excluded subjects below the
age of 18 resulting in 37 patients (mean age= 26.34, SD=7.37, 37
males) and 27 controls (mean age=25.42, SD=6.28, 27 males).
Testing cross validation was performed on the ABIDE II Barrow
Neurological Institute (BNI) data set. It consisted of 58 subjects between
the ages of 18 and 64 (29 controls 18–64; mean age=39.59,
SD=15.09 and 29 patients 18–62; mean age=37.44; SD=16.09).
After removing four 18 year old subjects, our sample consisted of 27
controls (mean age=39.58; SD=15.09; 27 males) and 27 patients
(mean age=37.6; SD=16.09; 27 males). All data was collected in
compliance with their relevant institutional review boards.

To identify common and disparate features and to use SVM to dis-
tinguish between SZ and ASD, we created a hybrid control group made
up of subjects from each of the SZ and ASD control sets. The hybrid
control group was constructed by combining the 27 ASD control sub-
jects from the ASD training set with 27 randomly selected subjects from
the control group of the SZ training data set. The RFE procedure was
then applied to identify features that distinguish SZ patients from the
hybrid control group and ASD patients from the hybrid control group.
The ASD and SZ feature sets were then compared to identify common
and disparate features of the two disorders.

2.2. Preprocessing

Preprocessing steps were carried out using FSL (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FSL) and included brain extraction using FSL's BET
(Smith, 2002), motion correction using FSL's MCFLIRT (Jenkinson
et al., 2002), and linear registration to the Montreal Neurological In-
stitute (MNI152) 2mm standard (Mazziotta et al., 1995) using FSL's
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002). Frame
displacement parameters were regressed out of each data set to control
for motion.

2.3. ROI selection

We chose to use a set of 283 regions of interest (ROIs) spanning both
cortical and subcortical areas. These ROIs are an extended version of a
previously generated parcellation based on meta-analysis over a range
of tasks that resulted in 264 ROIs of putative functional relevance
(Power et al., 2011). Each ROI is a 5mm sphere around a voxel of peak
significant activity during performance of tasks such as button-pressing,
reading, and memory retrieval. Bilateral regions in the brainstem, basal
forebrain, hippocampus, amygdala, and putamen make up the addi-
tional 19 ROIs. For each subject, average time series were extracted for
each ROI over the 5mm spheres. Data sets were matched for number of
time points to the COBRE SZ data set by randomly selecting a start point
that resulted in 120 consecutive scans.

2.4. Connectivity matrix graph model generation

There are a number of approaches to define functional relationships
between brain areas. One common approach is functional connectivity,
which refers to temporal correlations signal intensity across brain re-
gions. In this study, we utilize a Bayesian approach to determine ef-
fective connectivity between brain areas. Effective connectivity is a
measure of the influence brain regions exert over each other over time
(Friston, 1994). Using Bayes Nets to determine effective connectivity
offers some advantage over functional connectivity measures in that
they are less sensitive to motion artifacts. Whereas motion results in
artificially altered correlation coefficients across the brain (Power et al.,
2012), the probabilistic determination of connections between vari-
ables in Bayesian models make them less susceptible to spurious con-
nections resulting from motion artifacts (Hanson et al., 2016). In this
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study, Bayesian network models were generated for each subject to
represent the effective connectivity between ROIs. Bayesian network
models are graphical models where variables (ROIs) are depicted as the
nodes of the network and directed edges as the interactions between
nodes. Connections between ROIs represent probabilistic dependencies
among variables quantified by their conditional probability distribu-
tions. The network structure expresses the joint probability distribution
over all variables. The structure of a Bayesian network model re-
presenting the interactions between each of the ROIs over the scan
duration is learned from the ROI time series data using a score-based
hill-climbing greedy search algorithm as implemented in the R bnlearn
package (https://cran.r-project.org/web/packages/bnlearn/index.
html). Such algorithms have been benchmarked for use in fMRI data
and have demonstrated excellent accuracy and stability (Ramsey et al.,
2011) over known network structures. Bayesian information criterion
(BIC) scores measure the goodness of fit of the network structure based
on the log-likelihood of the data given the network structure, while
simultaneously penalizing the number of parameters in the model.


= −BIC n k Lln( ) 2 ln( )


=L p x M( | θ, )

L =maximized likelihood function of the model M over the ob-
served data x, and parameter values θ

n=number of data points
k=number of parameters to be estimated.
As the number of parameters k in the model increases the BIC score

also increases; lower BIC scores are considered better models. In this
way, the number of parameters in the model is constrained. Edges are
added to the model individually and a new BIC score is calculated to
determine whether the additional variable improves the fit. The search
procedure concludes when the fit is not further improved (the BIC score
is not reduced) by inclusion of new edge parameters. The number of
ROIs in our feature set was 283, resulting in 80,089 (283× 283) pos-
sible edges or features. Therefore this is the feature space that is sear-
ched during the learning procedure. Once the graph structure is found,
edge weights are determined as linear regression coefficients, resulting
in a weighted connectivity matrix for each subject. These weights were
then normalized by subject by z-scoring over the non-zero model edge
weights in order to preserve the relationships between variables and to
facilitate comparison across subjects and data centers.

2.5. Identifying relevant discriminatory features

A linear support vector machine (SVM) was used to classify between
schizophrenic patients and controls based on each subject's weighted
connectivity matrix. An SVM is a supervised multivariate classification
method that treats each of the features, or edges, as a point in a high
dimensional space. Training of an SVM results in a set of support vec-
tors (points in multidimensional feature-space) that represent the
boundary between classes. Because the support vectors are at the
boundary between classes, they are not useful in determining features
that are most indicative of each class. We identify the most indicative
features using recursive feature elimination (RFE) (Guyon et al., 2002;
Hanson and Halchenko, 2008). The basic principle of RFE is to initially
include all edges in the model and to gradually exclude edges, that do
not contribute in discriminating between the two classes. This approach
iteratively trains and tests the SVM, discarding the least important
features at each iteration until a core set of features remain, having the
highest discriminative power. At each iteration, data from the training
set is randomly sub-divided into training and testing sets consisting of
10% of the total number of subjects. After training, the least significant
10% of features are removed from the feature set. Feature significance
is based on the support vector model coefficients (Krantz et al., 1971).
Classification accuracy on the held out 10% of subjects is recorded at
each iteration. A bootstrap procedure was implemented that repeats the

RFE process 100 times. Accuracies are averaged over the 100 bootstrap
samples. The number of features to include in the final model was de-
termined by choosing the number that yielded the highest classification
accuracy on average over the 100 bootstrap samples. Edge features
were sorted according to the frequency (1–100) of their inclusion in the
top feature set yielding highest accuracy. The RFE process was done
separately and identically for both the SZ and ASD data sets, resulting
in a separate set of distinguishing features for each patient population
from that of healthy controls. A separate SVM model for SZ and ASD
was then created using these features.

2.6. Cross validation on independent data

Independent data sets, from a new cohort of subjects that were
collected at different sites were used as testing cross validation sets. The
SVM models generated from the features identified through the RFE
procedure, were used to predict group membership of the testing cross
validation data sets. Each of the new data sets underwent identical
preprocessing procedures as the original training cohorts. Their
weighted edge matrices were used to determine how well our SVM
models generalize. We predicted the group membership (ASD vs con-
trol, SZ vs control) on these new subjects using the SVM models that
were trained on the initial training cohort of subjects. Cross-validation
in this way, allows us to see how well our models generalize outside of
the patient population on which it was trained and also ensures that
classification accuracy is not driven by differences in age, scanning site
or other potential cohort or procedural differences in subject groups.

2.7. Identifying common and disparate features of autism and
schizophrenia

To identify common and disparate features of ASD and SZ we
formed a control group from a mixture of equal numbers of subjects
from the control groups of the ASD and SZ data sets. Using this control
group during training avoids identifying features that could potentially
distinguish the two data sets (SZ and ASD training sets) for reasons
having nothing to do with the different patient population features.
That is, the hybrid control group is also drawn from samples across
scanners. Therefore, the classification cannot be made solely on dif-
ferences that may be present in data samples due to collection at dif-
ferent scanner sites. RFE was performed separately for ASD and SZ
against this common control group. Identified features were separated
into common and divergent feature sets. Common features were those
identified by both the SZ and ASD RFE procedures against the common
control; divergent features were the remaining SZ and ASD features
combined. Features were then divided into non-overlapping functional
networks for the purpose of visualization using network definitions
from a previously defined functional brain atlas (Richiardi and
Altmann, 2015). ROIs were defined as belonging to a given network if
they were spatially overlapping with the atlas network mask.

3. Results

3.1. Discriminative connectivity features

RFE was performed separately on the ABIDE USM and the COBRE
SZ training data sets and resulted in: 1) a set of features or edges that
were most diagnostic in distinguishing ASD/SZ subjects from healthy
controls. The features identified represent the set of edges that differ
most significantly for SZ and ASD patients relative to healthy controls.
2) A model generated by training an SVM on just these features which
can then be used to predict the class of a new set of subjects in the
testing data sets.

3.1.1. ASD diagnostic features
The RFE procedure was performed on the ASD USM training data set
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to classify ASD subjects from healthy controls. The procedure resulted
in maximum average accuracy over 100 bootstrap samples using 4500
features. SVM models for classification of the ASD training set were
generated by training an SVM on a range of between 100 and 4500 of
the top RFE determined features. Classification accuracy dropped
steeply if fewer than 100 of these diagnostic features were used. In
order to determine whether the model generalizes to ASD patients
outside of this set, we tested the diagnostic accuracy of these features
on an independent testing data set. The features were used to predict
the identity of subjects in the training-naive ASD ABIDEII-BNI test data
set. Receiver operator curves (ROCs) were generated to show classifi-
cation accuracy on the training-naive data set as a function of the
number of the top features used (Fig. 1a). An ROC is a visual re-
presentation of the sensitivity and specificity of the model. Sensitivity is
the ability to correctly identify ASD subjects or the true positive rate
(TPR). Specificity is the ability to correctly identify healthy individuals
or 1− false positive rate (1− FPR). A perfect model would have 100%
sensitivity (TPR=1) and specificity (FPR=0). Note that the SVM was
never trained on the test data set. Rather, SVM models generated on the
training data set with different numbers of the top features identified
through the RFE procedure were used to predict the identity of subjects
in the ASD test data set. Over a range between 800 and 1000 of the top
RFE-determined features, the models performed well, with accuracies
of 83% (75% sensitivity and 89% specificity) on the ASD test data set
(Table 1). Therefore these edges represent the features that are most
diagnostic for ASD and generalize across data sets. Diagnostic features
are distributed across the brain and across networks, with the largest
number of diagnostic features clustering within the default mode, sal-
ience and executive control networks, higher order visual and motor
systems (Fig. 2a).

3.1.2. Schizophrenia diagnostic features
The RFE procedure was performed on the SZ COBRE training data

set to classify SZ subjects from healthy controls. SVM models using
these features on the training set were created by training an SVM on
the SZ training data using the top 165–4500 features. These features
were then used to predict SZ patients in the training-naive SZ test data
set. ROC curves were generated to show the classification performance
on the test data set as a function of the number RFE features used
(Fig. 1b). Again, the SVM was never trained on the SZ test data set.
Models generated on the training data set with different numbers of the
top features identified through the RFE procedure were used to predict

the identity of subjects in the SZ testing data set. Fewer features were
required to achieve good classification in the SZ test validation data set
than in the ASD test validation set. Over a range between 400 and 600
of the top RFE-determined features the models performed very well,
achieving accuracy of 80% (80% sensitivity and 80% specificity) on the
test SZ data set (Table 2). These edges are those features that are most
diagnostic for SZ across data sets. Diagnostic features had the largest
contributions from the DMN, salience network, and sensory-motor
cortices (Fig. 2b).

3.2. ASD and SZ common features

After training SVMs for ASD and SZ against the common control
group, we found just under 100 features common to both models.
Common features are the graph model edge weights whose values are
diagnostic for both disorders, but common features may not necessarily
be increases (or decreases) relative to controls for both disorders. It is
possible for a common feature to be indicative of increased connectivity
in one disorder and decreased connectivity in the other. However, the
overall pattern of connectivity changes in common features across
networks are similar for both ASD and SZ, with similar patterns of

Fig. 1. ROCs of cross-validation accuracy on the a) ASD training-naive test data set as a function of the number of diagnostic features used for prediction. Best model performance: of 83%
accuracy (75% sensitivity and 89% specificity) was achieved using between 800 and 1000 of the top RFE-determined features. b) SZ training-naive test data set. Best performance was
achieved using the top 400–600 RFE features which resulted in 80% accuracy with 80% sensitivity (TPR) and 80% specificity (1− FPR). Diagnostic features were determined by RFE on
training data sets. Performance at chance is represented on the red diagonal.

Table 1
Specificity and sensitivity for ASD classification on untrained data.

ASD

Number of features Specificity Sensitivity Accuracy

9 0.33 0.33 33.00%
13 0.33 0.5 42.00%
17 0.44 0.33 39.00%
24 0.33 0.75 54.00%
34 0.44 0.42 43.00%
49 0.44 0.5 47.00%
73 0.56 0.75 66.00%
110 0.56 0.67 62.00%
165 0.56 0.75 65.00%
249 0.56 0.75 65.00%
376 0.44 0.75 60.00%
570 0.55 0.75 65.00%
868 0.89 0.75 83.00%
1321 0.89 0.75 83.00%
2009 0.78 0.67 73.00%
3060 0.78 58 68.00%
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increases relative to decreases. A small number of features such as those
between the salience and ECN networks indicated a greater proportion
of increases than decreases for SZ as compared to ASD subjects. The
number of increases relative to decreases in these features is shown for
ASD in Fig. 3a and for SZ in Fig. 3b. About half of the common features
are within-network connectivity differences (changes in connectivity
between spatially disparate regions of the same network) shown along
the diagonal in Fig. 3. Common diagnostic features across the disorders
are concentrated within the sensory-motor cortex, executive control,
salience and default mode networks and were visualized (Fig. 4) using
BrainNet Viewer (http://www.nitrc.org/projects/bnv/) (Xia et al.,
2013).

3.2.1. Features common to ASD and SZ predict deficits in ASD
communication skills

Symptom severity scores for SZ patients were not available in the
COBRE and Rutgers data sets. A variety of cognitive assessments were
available for ASD patients in the ABIDE data set. Because social deficits
are common to both ASD and SZ, we looked for relationships between
edge weight strengths in the edges common to both the SZ and ASD

models and scores of social and communication deficits in ASD subjects.
We compared average edge weights of ASD patients relative to controls
over the common features to the autism diagnostic observation sche-
dule (ADOS) (Lord et al., 2000), a standardized assessment of social and
communicative abilities. Differences in edge weights of the common
edges between the two models significantly predicted ADOS social
scores, b=−17.24, t(35)=−2.054, p < .05; R2=0.11, F
(1,35)= 4.219, p < .05. Decreased average connectivity strength over
the edges common to the ASD and SZ models in the DMN were asso-
ciated with higher ADOS scores and greater communication deficits.

3.3. ASD and SZ disparate features

The remaining disparate features between the ASD and SZ models
(~1000) represent features found to be diagnostic in either the ASD
(Fig. 5a) or SZ (Fig. 5b) models relative to the common control group,
but were not present in both models. The ASD model required a greater
number of features to obtain good classification. Both models contain a
mixture of increases and decreases in connectivity strength across and
within networks. The ASD and SZ models exhibited a large number of
non-overlapping features within the DMN and the salience network.
However, a much larger proportion of diagnostic features associated
with ASD were within-network changes in the DMN as compared to SZ.
Features within sensory-motor networks were more prominent in the
ASD than SZ model, while changes in the ECN and increases in con-
nectivity in higher level visual processing areas were more prominent in
the SZ model. In Sections 3.1.1 and 3.1.2 we reported on the features
identified through the RFE procedure when performed on each of the
individual training data sets. We compared these features to those
identified by performing the same procedure using the common mixed
control group, which consisted of an equal number of control subjects
from both data sets. From the initial set of potential features, about half
of those identified using RFE on the original training data sets were also
identified using the hybrid control group.

3.3.1. SVM discrimination between SZ and ASD subjects
An SVM was trained using the combined common and distinct

features across the ASD and SZ models to determine whether they could
be used to classify ASD from SZ subjects. We were able to successfully
classify ASD patients from SZ patients from the training data sets
achieving 98% accuracy with 10-fold cross-validation. To test the

Fig. 2. Diagnostic features by network. Diagonal elements represent within network edges (edges between different regions of the same network). Numbers represent the number of
features while the size/colors indicate the ratio of those features that represent increases rather than decreases in connectivity strength relative to controls. Larger circles/yellow colors
indicate a greater proportion of connectivity increases and red a greater proportion of decreases. Total number of features per network is indicated in the left column. a) In ASD, features
cluster within the DMN, salience, ECN, higher order visual and motor networks having the largest number of diagnostic features. b) In SZ, features are also clustered in the DMN and
salience networks with less emphasis on the ECN.

Table 2
Specificity and sensitivity for SZ classification on untrained data.

SZ

Number of features Specificity Sensitivity Accuracy

12 0.3 0.4 35.00%
16 0.8 0.2 50.00%
22 0.3 0.7 50.00%
31 0.3 0.8 55.00%
45 0.5 0.8 65.00%
66 0.4 0.8 60.00%
99 0.5 0.7 60.00%
149 0.6 0.8 70.00%
225 0.7 8 75.00%
339 0.7 8 75.00%
514 0.8 0.8 80.00%
782 0.8 6 70.00%
1809 0.7 0.7 70.00%
2754 0.7 0.7 70.00%
4195 0.8 0.8 80.00%
5753 0.8 0.7 75.00%
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generalizability of these features in their ability to distinguish ASD from
SZ subjects, these features were used to predict group membership in
ASD and SZ subjects from the validation data sets. Again, the SVM
model was trained on the training data sets and the resulting model was
used to predict membership in the validation set based on this model.
As in the other validation procedures, we explored the diagnostic utility
of the features for the purpose of distinguishing ASD from SZ subjects
by using different numbers of the most significant features determined
from the SVM model parameter weights resulting from training on the
training data sets (Table 3). Using 40–50 features we obtained 75%
accuracy when predicting class membership in the ASD and SZ vali-
dation data sets (Fig. 6). When examining the edge weights of these
features in ASD and SZ patients (Fig. 7) a striking difference in the
pattern of increases and decreases is readily apparent. In the feature set
that distinguishes ASD from SZ subjects, ASD is characterized by

increases rather than decreases in connectivity strength in nearly all
connections between and within networks. While DMN connectivity is
prominent in the feature sets for both disorders, the DMN is also the
most diagnostic network for distinguishing ASD from SZ. Examining the
specific edges involved, SZ exhibited decreased connectivity strength in
all DMN connections except those between the posterior cingulate and
supplementary motor cortex, and between the precuneus and lateral
occipital cortex.

4. Discussion

From a diagnostic point of view, there is considerable interest in
identifying biomarkers for psychiatric disorders such as ASD and SZ.
However, there is a recognition that symptoms in many psychiatric
disorders lie along a continuum with some degree of overlap across
disorders. Despite the similarities between ASD and SZ, particularly in
social cognitive deficits and their overlapping etiologies, they are
seldom studied comparatively. In their separate literatures, aberrant
connectivity has been the focus of study in both ASD and SZ, because it
is believed that their cognitive deficits may be caused by the impaired
ability to integrate information across functionally distributed brain
areas. However, studies of connectivity differences in both ASD and SZ
have yielded conflicting results, particularly those that have focused on
average connectivity changes between specific brain regions. This
highlights the difficulty of using regional connectivity differences be-
tween just one or two regions to characterize complex disorders such as
ASD and SZ. Even if individual features did reach statistical sig-
nificance, this would not be sufficient for use as a biomarker, since
there is still considerable overlap in the distributions of regional con-
nectivity strengths between patients and controls. Multivariate pattern
analysis, on the other hand, can reliably distinguish patients from
healthy controls by identifying a set of features that in combination best
describe the deviations from normal connectivity patterns. In addition,
this technique makes use of the mixture of increases and decreases in
regional connectivity strength to help distinguish groups. In contrast,
univariate techniques typically require averaging over regional changes
which may account for some of the conflicting results in the literature.

Fig. 3. Features common to both the ASD and SZ models relative to the common control group. Diagonal elements represent within network edges between different regions of the same
network. Numbers represent the number of features within and between networks while the size/colors indicate the ratio of those features that represent increases rather than decreases
in connectivity strength relative to controls. Larger circles/yellow colors indicate a greater proportion of connectivity increases and red a greater proportion of decreases for a) ASD and b)
SZ. Total number of features per network is indicated in the left column. Overall pattern of connectivity changes in common features across networks are similar for both ASD and SZ.

Fig. 4. Common features of ASD and SZ models. Common diagnostic features across the
disorders are concentrated within the sensory-motor cortex, executive control, salience
and default mode networks and cluster in the left hemisphere.
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4.1. Classification accuracy

For both SZ and ASD, we generated SVM models on an optimized set
of diagnostic features identified through a feature elimination proce-
dure. We then tested these models on independent data sets to see if
they generalize. We found that the most significant features from each
classification set did generalize and allowed us to obtain good classi-
fication accuracies on our testing data sets. We obtained 83% accuracy
on the ASD validation data set and 80% accuracy on the SZ validation
data set. Many studies using multivariate classifiers have been pre-
viously carried out for both disorders (see Demirci et al., 2008 and
Kambeitz et al., 2015 for schizophrenia review; Stevenson and Kellett,
2010 autism). The overwhelming majority of such studies cross-vali-
date their models using a leave one out, leave two out, or 10-fold cross
validation scheme. Very few test the generalization of their models on
independent data sets. For example, in one recent study of ASD (Ecker
et al., 2010) 81% classification accuracy was achieved using SVM and
leave two out cross validation of MRI structural images. They identified
differences in grey matter structure in frontal, parietal, and limbic re-
gions as well as the basal ganglia. In another large multi-site study of
964 autistics, 60% accuracy was achieved using functional connectivity
and leave one out cross-validation. They identified features in DMN,
temporal regions and the intraparietal sulcus. Similar studies have been
carried out in the schizophrenia literature. One such study reported
85% classification accuracy using SVM with 10-fold cross validation on

functional connectivity measures (Arbabshirani et al., 2014). Another
study achieved 93% accuracy using Fishers' linear discriminant ana-
lysis. Their analysis identified the DMN, temporal and visual regions as
the most significant classification features (Du et al., 2012). By testing
our classification models on independent data sets over a range of the
top diagnostic features, we showed that the features determined to have
the most predictive power on our training data sets, determined based
on the SVM model coefficients, generalized to independent training-
naive data sets and that validation accuracies decrease as the number of
diagnostic features becomes insufficient.

4.2. Divergent features of ASD and SZ

The diagnostic features we identified through the RFE procedure
were distributed across the brain, which supports the hypothesis that
impaired integration of information across distributed brain areas is a
hallmark of both ASD and SZ. Both disorders exhibited a large number
of changes in connectivity in the DMN and salience networks. However,
the two disorders dissociate in terms of the specific pattern of altera-
tions. ASD showed a greater proportion of within-network changes in
the DMN and reduced connectivity between DMN and language areas.
In contrast, SZ changes between DMN and language areas were largely
increases in connectivity. Diametric changes in connectivity were also
identified within the ECN where ASD exhibited largely decreases in
connectivity relative to controls and SZ largely increases. The ECN is
involved in execution of voluntary control of behavioral responses to
salient stimuli and has been identified as a loci of changes in con-
nectivity in SZ (PC et al., 2013; Orellana and Slachevsky, 2013). It is
unclear however whether changes in ECN associated with ASD are a
primary cause of dysfunction or the result of dysfunction in lower-level
sensory processing (Kenworthy et al., 2008). In fact, a much larger
proportion of diagnostic features were found in sensory-motor regions
in ASD than were identified in SZ patients. The role of the sensory-
motor cortex in social cognition has been studied in the context of the
mirror-neuron system, where it is believed that individuals make sense
of the actions and emotions of others (Gallese et al., 2004; Oberman
et al., 2007). Mirror neurons were originally discovered in the pre-
motor cortex of macaque monkeys (Rizzolatti et al., 1996). They are
known to fire during goal-oriented motor action, but also in response to
observing the same action performed by another individual. Previous
studies have indicated dysfunction of the mirror-neuron system in both

Fig. 5. Disparate features present in a) ASD model or b) SZ model but not in both models. Connectivity strength differences are relative to healthy individuals in the common control
group. Diagonal elements represent within network edges between different regions of the same network. Numbers represent the number of features within or between networks, while
color and size indicate the ratio of increases to decreases in connectivity strength for those features relative to controls. Yellow colors indicate a greater proportion of connectivity
increases, red a greater proportion of decreases. The DMN and salience networks account for the largest number of features with a mix of increases and decreases in connectivity strength.

Table 3
Specificity and sensitivity for classification of ASD patients from SZ patients in untrained
testing data sets.

SZ/ASD

Number of features Specificity Sensitivity Accuracy

5 0.5 0.6 55.00%
35 0.6 0.6 60.00%
41 0.6 0.9 75.00%
47 0.6 0.9 75.00%
53 0.6 0.7 65.00%
82 0.3 0.7 50.00%
118 0.2 0.6 40.00%
300 0.3 0.5 40.00%
590 0.3 0.4 35.00%
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ASD (Oberman et al., 2005; Enticott et al., 2012) and SZ (Mehta et al.,
2013; Möhring et al., 2015) patients. In addition, the ASD model re-
quired more features for accurate classification than were required for
SZ subjects. This may be due to the onset of the disorder early during
brain development. It has been suggested that early changes in sensory
processing of facial features, for example, lead to changes in the per-
ceived salience of such features and eventually to altered attentional
processing and social impairments in ASD (Schultz, 2005). Therefore,

aberrant function and connectivity early in development may lead to
compound changes later in development for higher level skills that are
dependent on more elementary or sensory-level function.

4.3. Common features of ASD and SZ

The ability to behave in a context appropriate manner is dependent
on recognition of socially relevant sensory information, and inferences
based on learned constructs such as theory of mind. Accordingly, in our
study, the overwhelming majority of diagnostic features identified for
both ASD and SZ are in the salience and default mode networks. The
DMN is believed to be essential to theory of mind abilities (Buckner and
Carroll, 2007), while the salience network contributes to a variety of
cognitive abilities including communication, social behavior and self-
awareness (Menon and Uddin, 2010). Both networks have been pre-
viously implicated in a variety of brain disorders including SZ and ASD.
For example, in autism is it known that the relative salience of social
queues including facial expressions are impaired (Volkmar, 2005). In
schizophrenia, misattribution of salience to external and internal sti-
muli may be a cause of positive symptoms such as hallucinations
(Palaniyappan and Liddle, 2012). The DMN is an important part of
association cortex. The DMN has connections to supplementary motor
areas, frontal eye fields involved in control of visual attention, and
reciprocal connections to thalamic nuclei that in-turn connect ex-
clusively with higher association cortices (Cavanna and Trimble, 2006).
While there is little debate that the DMN is activated during theory of
mind and other self-reflexive tasks, the function of the DMN is not well
understood. Many studies have identified the DMN as a collection of
areas that are structural and functional hubs, acting as a common
connection point for many other brain areas (Nijhuis et al., 2013; van
den Heuvel and Sporns, 2013). The DMN may play a key role in in-
tegrating executive control and salience networks, as was reported re-
cently in the context of an n-back working memory task (Liang et al.,
2016). As the task load elevated, functional connectivity increased
between the salience network and the default mode and executive
control networks. Interestingly, there is evidence that the DMN may
integrate with salience networks in a graded manner. In a very large
study of resting state functional connectivity, smoothly varying gra-
dients of connectivity were found between each region of the DMN and

Fig. 6. ROCs of cross-validation accuracy predicting SZ from ASD patients in the training-
naive test data set as a function of the number of diagnostic features used for prediction.
Diagnostic features are the combination of the SZ and ASD features when trained against
common control group. Best performance was achieved using the top 40–50 RFE features
which resulted in 75% accuracy with 90% sensitivity (TPR) and 60% specificity
(1− FPR).

Fig. 7. Features that distinguish ASD from SZ. Diagonal elements represent within network edges between different regions of the same network. a) For ASD relative to SZ, the DMN
network accounts for the largest number of features where there are mostly increases in connectivity strength relative to SZ patients. b) SZ relative to ASD. Numbers represent the number
of features within or between networks, while color and size indicate the ratio of increases to decreases in connectivity strength in those features. Yellow colors indicate a greater
proportion of connectivity increases, red a greater proportion of decreases.
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salience network (Anderson et al., 2011c). These connectivity gradients
were found to strengthen with maturity. It is possible that aberrant
balance between these gradients of connectivity develop as a result of
improper pruning and fine tuning over the course of development
leading to dysfunction. Therefore, the changing interaction of these
networks over the course of brain development is one possible ex-
planation for why cognitive deficits similar to those of ASD do not
manifest in SZ till early adulthood. A graded response between key
networks may also contribute to the spectrum of cognitive deficits ob-
served when this system is compromised.

4.4. Discriminating ASD from SZ

A small subset of the common and divergent features that dis-
tinguished either ASD or SZ from controls had diagnostic importance
for classifying ASD from SZ subjects. This subset was dominated by
features in the DMN. Our results indicate that relative to SZ patients
(rather than controls), ASD is associated with stronger connectivity in
DMN connections, while weaker connectivity was found in SZ patients
for the same edges. Positive symptoms associated with SZ, such as
hallucinations, are one of the main characteristics that distinguish SZ
from ASD. Positive symptoms in SZ are reportedly correlated with in-
creased functional connectivity between the posterior regions of the
DMN and the salience network (Bluhm et al., 2007). Our results suggest
that such increases involve connections specifically between the pos-
terior cingulate and supplementary motor cortex, and between the
precuneus and lateral occipital cortex. In addition, some studies have
indicated that negative symptoms in SZ, such as impaired social cog-
nition, are associated with decreased connectivity with anterior parts of
the DMN in medial prefrontal cortex (Camchong et al., 2011). Impaired
social cognition related to theory of mind abilities, tasks that typically
recruit DMN structures, has also consistently been associated with re-
duced activation of the DMN in ASD. However, our results suggest that
SZ subjects have weaker connectivity over specific edges within ante-
rior DMN regions particularly related to connections to the para-
cingulate. As we were able to use these features to successfully classify
ASD from SZ subjects in our validation data sets, we have demonstrated
that multivariate machine learning techniques can be used to distin-
guish between disorders even when there is considerable overlap in
their symptoms.

4.5. Limitations of the current study

The RFE method we employed demonstrates that there are char-
acteristic changes in the patterns of resting state connectivity that
generalize to patient populations outside of our training sets. A specific
challenge to be met in identifying diagnostic biomarkers from resting
state functional connectivity is to find the best set of features to max-
imize diagnostic capability. The set of ROIs we used, while compre-
hensive in their representative coverage of functional brain areas,
nonetheless has sparse coverage over the whole brain. Future work
should explore similar analysis using a voxel level approach to de-
termine if there are better features to use for this purpose. Additionally,
because we did not have access to symptom severity measures in our
schizophrenic patients, we were not able to explicitly associate common
connectivity differences in ASD and SZ to measures of symptom severity
in SZ patients. Finally the sample size of the SZ test data was small.
Future studies would explore the utility of identified features over
several data sets for greater certainty of diagnostic utility. However,
few studies attempt to validate classifier models on data sets outside of
the training set. We achieved good classification accuracy on this small
data set as well as the larger ASD test set, suggesting that our model
features are based in disease specific changes in connectivity that may
generalize to other patient populations.

5. Conclusion

In summary, in this study, we identified common changes in con-
nectivity between ASD and SZ and showed that these changes predict
deficits in communication skills in ASD patients. Our results suggest
that common social cognitive deficits associated with ASD and SZ may
be related to changes in connectivity within higher order association
cortex in the DMN and salience network. In addition, we have identified
divergent changes in connectivity and showed that these features can
be used to discriminate ASD and SZ patients. These features resulted in
classification accuracies well above chance performance in training-
naive data sets, suggesting that these models may generalize across
patient populations. Relative to healthy individuals, there were more
disparate than common features of the two disorders, but only a few
features had diagnostic significance in distinguishing the two popula-
tions. Relative to SZ patients, the distinguishing features of ASD were
increases in connectivity within higher order visual processing areas
and the DMN. When disorders exhibit considerable overlap in their
symptoms, as is the case in ASD and SZ, comparative studies can yield
insights into the changes in connectivity that lead to common deficits.
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