<div dir="ltr">Dear all,<div><br></div><div>this is a Call for Paper for a Frontiers Research Topic on </div><div><h3 style="box-sizing:border-box;outline:0px;padding:0px;font-family:'Open Sans Neue','Open Sans',Helvetica,Arial,sans-serif;line-height:24px;color:rgb(0,0,0);border:0px;vertical-align:baseline"><a href="http://loop.frontiersin.org/researchtopic/6898" target="_blank" style="box-sizing:border-box;outline-style:none;margin:0px;padding:0px;background-color:transparent;color:rgb(0,0,0);text-decoration:none;border:0px;vertical-align:baseline"><font size="2">Data Assimilation and Control: Theory and Applications in Life Sciences</font></a></h3><div>see <a href="https://www.frontiersin.org/research-topics/6898/data-assimilation-and-control-theory-and-applications-in-life-sciences">https://www.frontiersin.org/research-topics/6898/data-assimilation-and-control-theory-and-applications-in-life-sciences</a> .</div><div><br></div><div><span style="color:rgb(85,85,85);font-family:MuseoSans,Helvetica,Arial,sans-serif">The understanding of complex systems is a key element to control the system's dynamics. To gain deeper insights into the underlying actions of complex systems, typically observations are analyzed what allows to derive corresponding models. These days more and more data of diverse types are available that mirror the systems dynamics, whereas system models are still hard to derive. Consequently, developing and establishing techniques that permit to gain models well-adapted to observed data is a long-standing dream of every scientific field. </span><br style="color:rgb(85,85,85);outline:0px;font-family:MuseoSans,Helvetica,Arial,sans-serif"><span style="color:rgb(85,85,85);font-family:MuseoSans,Helvetica,Arial,sans-serif">To this end, data assimilation and control theory provide important techniques to match diverse experimental data with an underlying model. </span><span style="color:rgb(85,85,85);font-family:MuseoSans,Helvetica,Arial,sans-serif">The present Research Topic aims to bring together both recent theoretical work in data assimilation and control and applications in life sciences. This collection will reflect the state-of-the-art in current research in data assimilation and control in, originally, distinct research domains. Examples of theoretical topics (as an unconstrained open list) are Kalman filters, variational assimilation techniques, regression techniques, stochastic optimization techniques, adaptive, optimal and stochastic control. Applications may range from the parameter estimation in genetic regulatory networks over forecasts of cardio-vascular activity to control of human limb movements.</span><br></div><div><span style="color:rgb(85,85,85);font-family:MuseoSans,Helvetica,Arial,sans-serif"><br></span></div><div><br></div>If you are interested and may need some more detail, you may send me an email or go to the webpage of the Research Topic.</div><div><br></div><div>Best regards</div><div><br></div><div><br></div><div>Axel </div><div><br></div><div>-- <br><div class="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><span style="font-family:arial,helvetica,sans-serif">Axel Hutt<br>Directeur de Recherche<br>Deutscher Wetterdienst - German Meteorological Service
<br>Research and Development, Department FE 12 (Data Assimilation)
<br>Frankfurter Strasse 135, 63067 Offenbach, Germany
Tel.: +49 69 8062 2750<br><a href="http://www.geocities.ws/digitalbath/" target="_blank">http://www.geocities.ws/digitalbath/</a></span><br></div></div></div></div></div></div></div></div>
</div></div>