<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><section id="h.p_1onzPBZwLH6L" class="nyKByd cJgDec yaqOZd LB7kq O13XJf"><div class="mYVXT"><div class="LS81yb VICjCf" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c JNdkSc"><div class="oKdM2c"><div id="h.p_aK1VSN0HLH6N" class="hJDwNd-AhqUyc-uQSCkd OjCsFc jXK9ad D2fZ2 GNzUNc wHaque"><div class="jXK9ad-SmKAyb jXK9ad-SmKAyb-c4YZDc"><div class="mGzaTb tyJCtd baZpAe lkHyyc"><h1 id="h.p_sS3ciZHoLH6Q" class="zfr3Q duRjpb">NIPS 2017 Workshop: Cognitively Informed Artificial Intelligence</h1></div></div></div></div></div></div></div></section><section id="h.p_eCK03bSV6-u4" class="yaqOZd"><div class="yaqOZd IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c JNdkSc"><div class="oKdM2c"><div id="h.p_gM35GGne6-u1" class="hJDwNd-AhqUyc-uQSCkd OjCsFc jXK9ad D2fZ2 GNzUNc wHaque"><div class="jXK9ad-SmKAyb jXK9ad-SmKAyb-c4YZDc"><div class="tyJCtd mGzaTb baZpAe"><h2 id="h.p_7l0PGNXn6-u3" class="zfr3Q JYVBee"><div class="" style="font-size: 16px; font-weight: normal;">December 9, 2017 in Long Beach, CA</div><div class="" style="font-size: 16px; font-weight: normal;">Workshop website: <a href="https://sites.google.com/view/ciai2017/home" class="">https://sites.google.com/view/ciai2017/home</a></div><div class="" style="font-size: 16px; font-weight: normal;">Conference website: <a href="https://nips.cc/" class="">https://nips.cc/</a></div><div class="" style="font-size: 16px; font-weight: normal;"></div></h2><h2 id="h.p_7l0PGNXn6-u3" class="zfr3Q JYVBee">Important dates</h2><p id="h.p_snsO9ijwWcIo" class="zfr3Q"><b class="">October 20, 2017: Deadline for contributed paper submissions</b></p><p id="h.p_mSuoHbVFWo1c" class="zfr3Q">November 3, 2017: Notification of contributed paper acceptances</p><p id="h.p_JUZl41KcWtu_" class="zfr3Q">November 10, 2017: Final program announced</p><p id="h.p_vtTzsSXDWwwO" class="zfr3Q">December 9, 2017: Workshop (Long Beach, CA)</p></div></div></div></div></div></div></div></section><section id="h.p_VFIZhE3flg0r" class="yaqOZd"><div class="yaqOZd IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c JNdkSc"><div class="oKdM2c"><div id="h.p_ORGGhAfTlg0n" class="hJDwNd-AhqUyc-uQSCkd OjCsFc jXK9ad D2fZ2 GNzUNc wHaque"><div class="jXK9ad-SmKAyb jXK9ad-SmKAyb-c4YZDc"><div class="tyJCtd mGzaTb baZpAe"><h2 id="h.p_9OLqFBN7lg0p" class="zfr3Q JYVBee">Overview</h2><p id="h.p_fsU8iWms7gEO" class="zfr3Q">The goal of this workshop is to bring together cognitive scientists, neuroscientists, and AI researchers to discuss opportunities for improving machine learning, by leveraging our scientific understanding of human perception and cognition. There is a history of making these connections: artificial neural networks were originally motivated by the massively parallel, deep architecture of the brain; considerations of biological plausibility have driven the development of learning procedures; and architectures for computer vision draw parallels to the connectivity and physiology of mammalian visual cortex. However, beyond these celebrated examples, cognitive science and neuroscience has fallen short of its potential to influence the next generation of AI systems. Areas such as memory, attention, and development have rich theoretical and experimental histories, yet these concepts, as applied to AI systems so far, only bear a superficial resemblance to their biological counterparts.</p><p id="h.p_vYBKMb6a3Mjx" class="zfr3Q">The premise of this workshop is that there are valuable data and models from cognitive science that can inform the development of intelligent adaptive machines, and can endow learning architectures with the strength and flexibility of the human cognitive architecture. The structures and mechanisms of the mind and brain can provide the sort of strong inductive bias needed for machine-learning systems to attain human-like performance. We conjecture that this inductive bias will become more important as researchers move from domain-specific tasks such as object and speech recognition toward tackling general intelligence and the human-like ability to dynamically reconfigure cognition in service of changing goals. For ML researchers, the workshop will provide access to a wealth of data and concepts situated in the context of contemporary ML. For cognitive scientists, the workshop will suggest research questions that are of critical interest to ML researchers.</p><p id="h.p_Rms3A0ef3Mj3" class="zfr3Q">The workshop will focus on three interconnected topics of particular relevance to ML:</p><p id="h.p_c1v-tSaa3Mj4" class="zfr3Q">(1) <em class="">Learning and development</em>. Cognitive capabilities expressed early in a child’s development are likely to be crucial for bootstrapping adult learning and intelligence. Intuitive physics and intuitive psychology allow the developing organism to build an understanding of the world and of other agents. Additionally, children and adults often demonstrate “learning-to-learn,” where previous concepts and skills form a compositional basis for learning new concepts and skills.</p><p id="h.p_QVmMgzHv3Mj4" class="zfr3Q">(2) <em class="">Memory</em>. Human memory operates on multiple time scales, from memories that literally persist for the blink of an eye to those that persist for a lifetime. These different forms of memory serve different computational purposes. Although forgetting is typically thought of as a disadvantage, the ability to selectively forget/override irrelevant knowledge in nonstationary environments is highly desirable.</p><p id="h.p_UTougSzG3Mj5" class="zfr3Q">(3) <em class="">Attention and Decision Making</em>. These refer to relatively high-level cognitive functions that allow task demands to purposefully control an agent’s external environment and sensory data stream, dynamically reconfigure internal representation and architecture, and devise action plans that strategically trade off multiple, oft-conflicting behavioral objectives.</p><p id="h.p_Yh-ls-zn3Mj6" class="zfr3Q">Our long-term goals are: </p><ul class="UVNKR n8H08c"><li id="h.p_syiLX9vC_xAP" class="zfr3Q TYR86d">to incorporate insights from human cognition to suggest novel and improved AI architectures;</li><li id="h.p_SXrOtO7s_2VQ" class="zfr3Q TYR86d">to facilitate the development of ML methods that can better predict human behavior; and</li><li id="h.p_sglZqXyr_3so" class="zfr3Q TYR86d">to support the development of a field of ‘cognitive computing’ that is more than a marketing slogan一a field that improves on both natural and artificial cognition by synergistically advancing each and integrating their strengths in complementary manners.</li></ul></div></div></div></div></div></div></div></section><section id="h.p_WXUQ5wGH5BIm" class="yaqOZd"><div class="yaqOZd IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c JNdkSc"><div class="oKdM2c"><div id="h.p_UeDObANK5BIg" class="hJDwNd-AhqUyc-uQSCkd OjCsFc jXK9ad D2fZ2 GNzUNc wHaque"><div class="jXK9ad-SmKAyb jXK9ad-SmKAyb-c4YZDc"><div class="tyJCtd mGzaTb baZpAe"><h2 id="h.p_zvHpJaiI5BIl" class="zfr3Q JYVBee">Organizers</h2><p id="h.p_6a5BnW825CQ_" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fwww.cs.colorado.edu%2F%7Emozer%2Findex.php&sa=D&sntz=1&usg=AFQjCNFOBBJfa83eCXiQePvoWxONbegHDA" target="_blank">Mike Mozer</a>, U. Colorado Boulder</p><p id="h.p_BPqAToP75F94" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fcims.nyu.edu%2F%7Ebrenden%2F&sa=D&sntz=1&usg=AFQjCNHShcu81Ez-rjFIRQJnN06A7VdX_Q" target="_blank">Brenden Lake</a>, NYU</p><p id="h.p_lRtjRyiimDIu" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fwww.cogsci.ucsd.edu%2F%7Eajyu%2F&sa=D&sntz=1&usg=AFQjCNFS1Nq9myPbw5EPr67-6WfdG2KOTQ" target="_blank">Angela Yu</a>, UCSD</p></div></div></div></div></div></div></div></section><section id="h.p_XY6GwLeF64oB" class="yaqOZd"><div class="yaqOZd IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c JNdkSc"><div class="oKdM2c"><div id="h.p_eFSoMcMh64n9" class="hJDwNd-AhqUyc-uQSCkd OjCsFc jXK9ad D2fZ2 GNzUNc wHaque"><div class="jXK9ad-SmKAyb jXK9ad-SmKAyb-c4YZDc"><div class="tyJCtd mGzaTb baZpAe"><h2 id="h.p_Cnfue6zl64n_" class="zfr3Q JYVBee">Invited speakers (confirmed)</h2><p id="h.p_GRJlt9ny66Ua" class="zfr3Q"><a class="dhtgD" href="https://scholar.google.com/citations?user=nQ7Ij30AAAAJ&hl=en" target="_blank">Peter Battaglia</a>, Deep Mind</p><p id="h.p_Spw4hbWl8zBB" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fwww.iro.umontreal.ca%2F%7Ebengioy%2Fyoshua_en%2F&sa=D&sntz=1&usg=AFQjCNEMJ2IkEYm0ZsMdm2uJ6PBBoBbfIA" target="_blank">Yoshua Bengio,</a> U. Montreal</p><p id="h.p_mU1cO4Zg82cC" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fpsychology.berkeley.edu%2Fpeople%2Falison-gopnik&sa=D&sntz=1&usg=AFQjCNEGr8NCQx2e6l4mySSR29aImo0kMg" target="_blank">Alison Gopnik</a>, UC Berkeley</p><p id="h.p_JLEf_23b8v2w" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fcocosci.berkeley.edu%2Ftom%2Findex.php&sa=D&sntz=1&usg=AFQjCNGTHVfbV_LAeGIYXsVvhwUZ4ndQSw" target="_blank">Tom Griffiths</a>, UC Berkeley</p><p id="h.p_EVDkz2Ie86gs" class="zfr3Q"><a class="dhtgD" href="https://www.google.com/url?q=https%3A%2F%2Fwww.bu.edu%2Fpsych%2Ffaculty%2Fmhoward%2F&sa=D&sntz=1&usg=AFQjCNHQoMSRmq9QNe5nyMFMAdlh9Bpj_g" target="_blank">Marc Howard</a>, Boston University</p><p id="h.p_Zv-7BHyOXqoi" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fwww.sas.rochester.edu%2Fbcs%2Fpeople%2Ffaculty%2Fjacobs_robert%2Findex.html&sa=D&sntz=1&usg=AFQjCNGxHTA02rPmpbNXPMYHhatKPCkZUw" target="_blank">Robert Jacobs</a>, U. Rochester</p><p id="h.p_uHdB8dMx84Ar" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fwww.psych.nyu.edu%2Fgary%2F&sa=D&sntz=1&usg=AFQjCNGOLAYUjZAYi1eE9Jh89Zmd0Yijvw" target="_blank">Gary Marcus</a>, NYU</p><p id="h.p_E7fbS_1Zq3fb" class="zfr3Q"><a class="dhtgD" href="http://www.google.com/url?q=http%3A%2F%2Fcvcl.mit.edu%2FAude.htm&sa=D&sntz=1&usg=AFQjCNEO5_RfUL17KA4oR9ljaDQ8ynWv2g" target="_blank">Aude Oliva</a>, MIT</p><p id="h.p_D6D73CBl9BiX" class="zfr3Q">... more to come</p></div></div></div></div></div></div></div></section><section id="h.p_eZsijZnmS7fZ" class="yaqOZd"><div class="yaqOZd IFuOkc"></div><div class="mYVXT"><div class="LS81yb VICjCf" tabindex="-1"><div class="hJDwNd-AhqUyc-uQSCkd purZT-AhqUyc-II5mzb pSzOP-AhqUyc-qWD73c JNdkSc"><div class="oKdM2c"><div id="h.p_b5cX_DJqS7fQ" class="hJDwNd-AhqUyc-uQSCkd OjCsFc jXK9ad D2fZ2 GNzUNc wHaque"><div class="jXK9ad-SmKAyb jXK9ad-SmKAyb-c4YZDc"><div class="tyJCtd mGzaTb baZpAe"><h2 id="h.p_nDVqCGV8S7fW" class="zfr3Q JYVBee">Contributing to the workshop</h2><p id="h.p_SHk9laI2TETm" class="zfr3Q">The goal of this workshop is to bring together cognitive scientists, neuroscientists, and AI researchers to discuss opportunities for improving machine learning, by leveraging our scientific understanding of human perception and cognition. We have reserved time for contributed papers and posters. We welcome submissions that present at least preliminary results. We are specifically aiming to identify work showing that cognitively-informed models and learning systems outperform standard AI/ML approaches. </p><p id="h.p_cpUWtJLMmV0p" class="zfr3Q">We will select based on (1) the depth to which cognitive principles, theories, and models inform the system, and (2) the performance advantage of the cognitively informed system. We encourage submissions making contact with any area of cognition―attention, perception, development, memory, learning from experience, judgment and decision making―which elucidate the computational principles or mechanisms that allow people to outperform machines, and which suggest novel approaches to solving AI challenges such as: flexible and generalizable learning, task-dependent information acquisition and processing, avoidance of catastrophic forgetting, and operating subject to energy (computational efficiency) constraints.</p><p id="h.p_XPR_5P9DUn1F" class="zfr3Q">We prefer brief submissions of up to four pages, excluding references, formatted in NIPS style. No need to anonymize submissions. If you have a longer manuscript already submitted and under review, you may submit the manuscript instead. Accepted submissions will be posted on the workshop page if the authors wish, but otherwise the submissions will be used only for reviewing contributions.</p><p id="h.p_N2MeLn5MVi8d" class="zfr3Q">Submit your contribution (in PDF format) to <a class="dhtgD" href="mailto:cognitivelyinformedAI@gmail.com" target="_blank">cognitivelyinformedAI@gmail.com</a>. Feel free to contact the organizers if you have questions about the relevance of your research for the workshop.</p><p id="h.p_fpMy70_TmScQ" class="zfr3Q"><br class=""></p><p id="h.p_ItJxugXd8MF-" class="zfr3Q"><em class="">NOTE: The NIPS 2017 conference is currently sold out including the main conference and workshops (waitlist available). A limited number of workshop registrations are reserved for workshop speakers but insufficient to cover all interested participants. We apologize for this unforeseen complication.</em></p><div class=""><br class=""></div></div></div></div></div></div></div></div></section><div class="">
<div style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class=""><div style="color: rgb(0, 0, 0); font-family: Helvetica; font-size: 16px; font-style: normal; font-variant-caps: normal; font-weight: normal; letter-spacing: normal; orphans: auto; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: auto; word-spacing: 0px; -webkit-text-stroke-width: 0px;">------------------------------------<br class="">Angela Yu<br class="">Associate Professor<br class="">Cognitive Science, UCSD<br class="">858-822-3317<br class=""><a href="http://www.cogsci.ucsd.edu/~ajyu" class="">www.cogsci.ucsd.edu/~ajyu</a><br class="">-------------------------------------<br class=""><br class=""><br class=""><br class=""></div></div>
</div>
<br class=""></body></html>