<div dir="ltr"><div class="gmail_quote"><div class="HOEnZb"><div class="h5"><div dir="ltr"><span style="font-size:13.3333px"></span><div class="gmail_quote"><div dir="ltr"><div><span style="font-size:13.3333px">CALL FOR PAPERS -- deadline extended due to popular request</span><br><br><span style="font-size:13.3333px">The ECML-PKDD </span><span style="font-size:13.3333px">2017</span><span style="font-size:13.3333px"> </span><span style="font-size:13.3333px">Workshop</span><span style="font-size:13.3333px"> on Automatic Machine Learning (</span><span style="font-size:13.3333px">AutoML</span><span style="font-size:13.3333px">) </span><br><span style="font-size:13.3333px">Collocated with ECML-PK</span>DD in Skopje, Macedonia, September 22<span style="font-size:13.3333px;background-color:transparent">, </span><span style="font-size:13.3333px;background-color:transparent">2017</span></div><div style="font-size:13.3333px">Web: <a href="http://ecmlpkdd2017.automl.org" style="color:rgb(17,85,204)" rel="nofollow" target="_blank">http://ecmlpkdd2017.autom<wbr>l.org</a><br>Email: <a href="mailto:icml2016@automl.org" style="color:rgb(17,85,204)" target="_blank">ecmlpkdd2017@automl.org</a><br><br>------------------------------<wbr>------------------------------<wbr>----<br>Important Dates:<br> Extended submission deadline: 16 July, <span>2017</span>, 11:59pm UTC-12 (July 16 anywhere in the world)<br> Notification: 30 July, <span>2017</span><br><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px">------------------------------</span><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px"><wbr>------------------------------</span><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:12.8px"><wbr>----</span></div><div style="font-size:13.3333px"><br></div><div style="font-size:13.3333px"><span style="font-size:13.3333px">AutoML: Automatic selection, configuration and composition of machine learning algorithms</span></div><div style="font-size:13.3333px"><br></div><div style="font-size:13.3333px">This
workshop will provide a platform for discussing recent developments in
the areas of meta-learning, algorithm selection and configuration, which
arise in many diverse domains and are increasingly relevant today.
Researchers and practitioners from all areas of science and technology
face a large choice of parameterized machine learning algorithms, with
little guidance as to which techniques to use in a given application
context. Moreover, data mining challenges frequently remind us that
algorithm selection and configuration are crucial in order to achieve
cutting-edge performance, and drive industrial applications. <span style="font-size:13.3333px;background-color:transparent">Meta-learning
leverages knowledge of past algorithm applications to select the best
techniques for future applications, and offers effective techniques that
are superior to humans both in terms of the end result and especially
in the time required to achieve it. In this workshop, we will discuss
different ways of exploiting meta-learning techniques to identify the
potentially best algorithm(s) for a new task, based on meta-level
information, including prior experiments on both past datasets and the
current one. </span><span style="background-color:transparent;font-size:13.3333px">Many
contemporary problems also require the use of complex workflows that
consist of several processes or operations. Constructing such complex
workflows requires extensive expertise, and could be greatly facilitated
by leveraging planning, meta-learning and intelligent system design.
This task is inherently interdisciplinary, as it builds on expertise in
various areas of AI.</span></div><div style="font-size:13.3333px"><br></div><div style="font-size:13.3333px">Main research areas of relevance to this workshop include, but are not limited to:</div><div style="font-size:13.3333px">- Algorithm / model selection and configuration</div><div style="font-size:13.3333px">- Meta-learning and exploitation of meta-knowledge</div><div style="font-size:13.3333px">- Hyperparameter optimization</div><div style="font-size:13.3333px"><span style="font-size:13.3333px;background-color:transparent">- Automatic generation and evaluation of learning processes / workflows</span></div><div style="font-size:13.3333px">- Representation learning and automatic feature extraction / construction</div><div style="font-size:13.3333px">- Automatic feature coding / transformation</div><div style="font-size:13.3333px">- Automatic detection and handling skewed data or missing values</div><div style="font-size:13.3333px">- Automatic acquisition of new data (active learning, experimental design)</div><div style="font-size:13.3333px">- Usage of planners in the construction of workflows</div><div style="font-size:13.3333px">- Reinforcement learning for parameter control & algorithm design</div><div style="font-size:13.3333px">- Representation of learning goals and states in learning</div><div style="font-size:13.3333px">- Control and coordination of learning processes</div><div style="font-size:13.3333px">- Meta-reasoning</div><div style="font-size:13.3333px">- Layered learning</div><div style="font-size:13.3333px">- Multi-task and transfer learning</div><div style="font-size:13.3333px">- Learning to learn</div><div style="font-size:13.3333px">- Intelligent experiment design</div><div style="font-size:13.3333px"><br></div><div style="font-size:13.3333px">Co-chairs: <span style="background-color:transparent">Frank Hutter, Holger Hoos, Pavel Brazdil and Joaquin Vanschoren</span></div><div style="font-size:13.3333px"><span style="background-color:transparent"><br></span></div><div><span style="font-family:Arial;font-size:small;background-color:transparent">We welcome </span><span style="font-family:Arial;font-size:small;background-color:transparent"><span style="font-family:Arial;font-size:small;background-color:transparent"><span style="font-family:Arial;font-size:small;background-color:transparent">standard </span></span>submissions of up to </span><span style="font-family:Arial;font-size:small;background-color:transparent">6 pages (not including references) in ECML-PKDD format, as well as longer papers of up to 15 pages </span><span style="font-family:Arial;font-size:small;background-color:transparent"><span style="font-family:Arial;font-size:small;background-color:transparent"> (not including references)</span>.<br></span></div><div><font size="2"><span style="font-family:arial,sans-serif"><span style="color:rgb(0,0,0);background-color:transparent;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><span style="color:rgb(0,0,0);background-color:transparent;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">For further details, please see the <a href="https://sites.google.com/site/automl2017ecmlpkdd/workshop/submission" target="_blank">submission page</a>; the submission deadline is July 16th, 2017.</span></span></span></font></div><div><span style="font-family:arial,sans-serif;font-size:small">All
accepted papers will be presented as posters and very short poster
spotlights; the best paper(s) will be selected for an oral presentation.<br></span></div><font size="2"><span style="font-family:arial,sans-serif"><span style="color:rgb(0,0,0);background-color:transparent;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline"><span style="color:rgb(0,0,0);background-color:transparent;font-weight:normal;font-style:normal;font-variant:normal;text-decoration:none;vertical-align:baseline">At least one author of each accepted paper should be registered for the main conference.</span></span></span></font></div>
</div><br></div>
</div></div></div><br></div>