<div dir="ltr"><div>Apologies for cross-postings. </div><div><br></div><div><b>Second call for papers</b>: </div><div><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><b style="font-size:x-large">Special Session at <a href="http://www.ijcnn.org/" target="_blank">IJCNN 2017</a></b></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><b><font size="4">Interpretable models in machine learning for advanced data analysis</font></b><b><br></b></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><b>Anchorage, Alaska, USA, May 2017</b></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><font size="+1">Organizers / contact: </font><span style="font-size:large">Michael Biehl (<a href="mailto:m.biehl@rug.nl" target="_blank">m.biehl@rug.nl</a>), Thomas Villmann (<a href="mailto:villmann@hs-mittweida.de" target="_blank">villmann@hs-mittweida.de</a>)</span></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><font size="+1">Technological progress leads to a tremendous growth of the amount of digital data in virtually all scientific and engineering disciplines. At the same time, the structural complexity of the acquired data is increasing steadily. As a consequence, it is instrumental to develop efficient methods for automated data analysis. However, good performance of the methods in terms of, for instance, classification or clustering is frequently not sufficient. Very often, deeper insight into the data processing and the problem at hand is desirable. For example, classifiers should be interpretable as to how the classification of a particular observation is obtained and which of the available information constitutes the basis of the decision. These additional properties of data processing methods can be summarized best by the term interpretability. The aim of the special session is to present and discuss new approaches for data analysis in terms of interpretable models, i.e. aiming at their added value beyond the mere clustering or classification itself. Interpretability of models is essential in nearly all areas of machine learning and data analysis. Hence, the topic of the session should be relevant for a large variety of research areas within the IJCNN community. </font></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><font size="+1">Possible topics include, but are not restricted to: <br>- prototype based models for unsupervised and supervised learning <br>- analysis of interpretable data structures <br>- interpretable feature extraction for improved performance <br>- visualization of multi-dimensional data for knowledge extraction <br>- integration of prior and expert knowledge <br>- interpretable adaptive (dis-)similarities and relevance learning</font></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><font size="+1">We encourage researchers interested in the theory and/or real world applications of interpretable models to contribute to the session. Theoretical models should be illustrated, whenever possible. Application oriented contributions should demonstrate how the interpretable models provide new, relevant insights into the data beyond the original task of, e.g., classification, prediction, or clustering.</font></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><font size="+1">Please visit the <a href="http://www.ijcnn.org/" target="_blank">conference homepage</a> for practical information and submission guidelines. </font></p><p style="font-size:18px;color:rgb(0,0,0);font-family:-webkit-standard"><font size="+1"><span style="font-weight:bold">Important dates: <br><span style="font-weight:normal">Paper submission: November 15, 2016 <br>Decision notification: January 20, 2017 <br>Final version due: February 20, 2017 <br>IJCNN conference: May 14-19, 2017</span></span></font></p></div><div><font size="+1"><span style="font-weight:bold"><span style="font-weight:normal"><br></span></span></font></div><br clear="all"><div><br></div>-- <br><div class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div>----------------------------------------------------------</div>
<div> </div>
<div>Prof. Dr. Michael Biehl</div>
<div>Johann Bernoulli Institute for</div>
<div>Mathematics and Computer Science</div>
<div>P.O. Box 407, 9700 AK Groningen</div>
<div>The Netherlands</div>
<div><br>Tel. +31 50 363 3997 <br><br></div>
<div><a href="http://www.cs.rug.nl/~biehl" target="_blank">www.cs.rug.nl/~biehl</a></div>
<div><a href="mailto:m.biehl@rug.nl" target="_blank">m.biehl@rug.nl</a> </div></div></div></div></div>
</div>