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Inspired by 

the anatomical 

connection patterns 

in the cerebral 

cortex, the authors 

introduce concept 

networks. Such a 

network acquires 

concepts as actions 

through autonomous, 

incremental, and 

optimal self-wiring 

and adaptation.

the concept of object type (for example, in 
a cluttered scene) is a concept that can be 
learned from many particular instances of 
various locations of the same type so that 
it becomes location invariant. In general, 
a concept and its value is represented as a 
sequence of response patterns in the mo-
tor area, typically in a natural language, to 
represent concepts such as location, type, 
scale, goal, subgoal, intent, purpose, price, 
and so on.

Although the discussion here is hope-
fully applicable to various sensory and ef-
fector modalities, we focus on vision as a 
sensory modality and only two categories 
of concepts: location and type. Other con-
cepts are similar (for example, scale con-
cept as in work by Xiaoying Song and her 
colleagues1). The reader can notice that the 
mechanisms discussed later aren’t specific to 
either the sensory modality or the two cho-
sen motor modality categories. 

There are two types of visual attention: 
bottom-up and top-down.2–5 The bottom-
up process is largely intent-free (or con-
cept-free), which is evident in a free-viewing 
situation when objects compete to catch our 
attention and a winner pops up.6 However, 
the top-down process is concept-directed. 
The network circuitry for the top-down 
process has been elusive. Robert Desimone 
and John Duncan wrote: “So far we have 
not dealt specifically with the representation 
of objects in the cortex. Although this is a 
key issue for understanding attention, little 
is actually known about the neural repre-
sentations of objects.”2 The lack of compu-
tational modeling of a network’s internal 
object representation has continued (for ex-
ample, see a review by Eric I. Knudsen7).

Charles H. Anderson,8 Bruno A. Olshausen,9 
and John K. Tsotsos and their colleagues10 
proposed shifter circuits for location-based, 
top-down attention (that is, not including the 

As defined in Webster’s dictionary, a concept is an abstract or generic 

idea generalized from particular instances. For example, object loca-

tion (for example, in an image) is a concept that can be learned from many par-

ticular instances of various objects so that it becomes type invariant. Likewise,
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type-based, top-down attention in this 
work). Given a location and scale (that 
is, given the location and scale values), 
their circuits shift and scale the se-
lected subpart in the retinal image into 
a size-normalized and background-free 
master map. From this master map, a 
subsequent classifier produces a label 
of object type. The values of object lo-
cation and scale are from a separate 
mechanism, not from the same net-
work. In contrast, our concept net-
work doesn’t have such a master map 
because such a map is handcrafted by 
the human programmer (as an internal 
central controller) for the given loca-
tion concept only. We don’t think that 
such a central controller exists for any 
biological brain.

There are many computational sym-
bolic models11 in the computer vision 
community, but they use handcrafted 
3D object models or 2D appearance 
models, which don’t allow the system 
to create unmodeled concepts. See Juy-
ang Weng’s work for the fundamental 
limitations of symbolic models.11

Our concept network has embodi-
ments called where-what networks.12 
A where-what network has learned at 
least two concepts, location (where) 
and type (what). It provides a highly 
integrated computational model that 
unifies all three types of attention—
bottom-up; location-based, top-down; 
and type-based, top-down. The con-
cepts and the circuits for executing the 
ideas emerge from, and are embedded 
in, the same network. A where-what 
network also gives a schematic and 
unified solution to the emergent inter-
nal representation for which Robert 
Desimone and his colleague2 and Eric 
I. Knudsen7 called. This solution indi-
cates that a master map isn’t necessary 
for all three types of attention. Fur-
thermore, a concept network provides 
a unified solution to the three open 
problems in the right three columns 
of Table 1, which compares symbolic 

models, prior emergent networks 
(neural nets), and concept networks.

With limited learning experience, 
our experimental results reported 
here only deal with early concepts in 
life (that is, location and type).

Concept Networks
Now, let’s take a closer look at the 
concept networks.

Theory
More than 50 neuroanatomical stud-
ies reviewed by Daniel J Felleman and 
David Van Essent indicated that each 
cortical area receives not only bot-
tom-up (ascending) input from earlier 
(sensory) processing areas but also 
top-down (descending) input from 
later (motoric) processing areas.13 
Furthermore, each area’s connections 
to earlier and later areas are both 
two-way. Among neurons in the same 
area, there are also intra-area (lateral) 
connections. That is, each neuron in 
general has three sources of inputs: 
bottom-up, lateral, and top-down, as 
Figure 1a illustrates. Such ubiquitous 
recurrence has posed great challenges 
to circuit understanding and analysis. 
Some prior two-way networks14 drop 
all intra-area (lateral) connections 
to simplify the processing. For more 
discussion about support from brain 
studies, see Juyang Weng’s work.12

Each concept network has two ex-
ternal areas X and Z and one (large) 
internal area Y, as Figure 1b shows. 
Each area A in {X, Y, Z} as a bridge 
predicts the signals in its two islands 
(sensory area and motor area) us-
ing its limited resource, as Figure 1a 

shows. If Y is the entire nervous sys-
tem, then X consists of all sensory re-
ceptors (for example, retina), and Z 
consists of all the motor neurons that 
drive muscles and glands. All levels 
in Y are emergent. The concept net-
work here computationally models 
how each brain area (for example, a 
Brodmann area) predicts signals in 
two island areas to which it connects. 
X and Z serve as both input and out-
put: environment teaching patterns 
go into Z (that is, the “Emergent rep-
resentation” column of Table 1) and, 
later, Y and X are predicted into Z, 
and unmodeled concepts (goals, ac-
tions, and so on) emerge from Z (that 
is, the “Unmodeled concepts” col-
umn of Table 1). Camera-supervising 
patterns go into X and, later, Z and Y 
are predicted into X, and the network 
executes attention/prediction (that is, 
the “Concept emergence” column of 
Table 1).

As Figure 1b models, within the in-
ternal brain area Y, each neuron con-
nects with highly correlated neurons 
using excitatory connections (for ex-
ample, via N-methyl-D-aspartate re-
ceptors) but connect with highly 
anticorrelated neurons using inhibi-
tory connections (for example, via 
gamma-aminobutyric acid receptors). 
This forces neurons in the same area 
to detect different features in the sen-
sory receptive field and motor re-
ceptive field. Suppose that location 
motor (LM) and type motor (TM) 
are always taught with the correct 
object location and object type, re-
spectively. Suppose also that an early 
developed pulvinar area only allows 

Table 1. Comparison of models.

Problems 
addressed

Goal-
directed 
reasoning

Emergent 
representation

Unmodeled 
concepts

Concept 
emergence

Concept-
directed 
perception

Symbolic  
models

Yes No No No No

Prior emergent  
networks

No Yes No No No

Concept  
networks

Yes Yes Yes Yes Yes
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those object-looking Y neurons to fire 
and learn, but not background look-
ing neurons to avoid wasting many 
Y neurons to learn background pat-
terns. The object-looking Y neurons 
are those neurons whose sensory re-
ceptive fields are at the object location 
signaled by LM. Then, these develop-
mental mechanisms result in the au-
tomatically generated connections in 
Figure 1 via Hebbian learning: Every 
Y neuron is location and type specific 
for a taught object. Each LM neu-
ron is location specific for a taught 

location but type invariant for all 
taught types. Each TM neuron is type 
specific for a taught type but loca-
tion invariant for all taught locations. 
Each Z motor neuron bottom-up col-
lects all applicable cases (neurons) 
from Y, each Y neuron being a case 
for the Z neuron to fire. The Z neuron 
also top-down boosts all applicable 
cases (neurons) down to Y (for exam-
ple, each TM neuron type boosts all 
applicable Y neurons of the attended 
type so it can find the object in a clut-
tered scene). The location concept in 

LM and the location concept in TM 
are all taught by the environment, and 
aren’t a part of programming. The in-
ternal wiring is determined by the sta-
tistical nature of the concept taught in 
LM and TM, respectively, as well as 
the contents in the image X.

Live
During prenatal learning, the c neu-
rons of Y need to initialize their syn-
aptic vectors V = (v1, v2, …, vc), and 
the firing ages A = (n1, n2, …, nc). 
Each synaptic vector vi is initialized 
using the input pair pi = (xi, zi), i = 1, 
2, …, c, at the first c time instances. 
Each firing age ai is initialized to be 
zero, i = 1, 2, …, c.

After birth, at each time instant, 
each area A in {X, Y, Z} computes its 
response r′ from its bottom-up input 
b and top-down input t with p = (b, t)  
based on its adaptive part N = (V, A)  
and its current response r, back-
ground suppressing vector ra (used 
only by Y) from LM, and updates N 
to N′:

(r′, N′) = f (b, r, t, ra, N),� (1)

where f is the unified area func-
tion described around Equations 2 
through 4. The vector ra has the same 
dimension as r, suppresses all the Y 
neurons to zeros except the 3 × 3 = 
9 ones centered at the correct object 
location. The vector ra isn’t available 
when LM isn’t supervised (for exam-
ple, during testing sessions).

Note that sensory area X doesn’t 
have a bottom-up area, and the mo-
tor area Z doesn’t have a top-down 
area. However, they predict the next 
firing according to the supervision in-
put from the environment and the fir-
ing pattern in Y.

Area Function
We hypothesize that each brain area 
performs prediction for all these 

Figure 1. The architecture of concept networks. (a) Six fields (hextuple) of each 
neuron: sensory receptive field (SRF), motor receptive field (MRF), lateral receptive 
field (LRF), sensory effective field (SEF), motor effective field (MEF), and lateral 
effective field (LEF). (b) A simple concept network with four areas: image X, 
occipital lobe Y, and location motor and type motor in the frontal lobe Z). Each 
wire connects if the presynaptic and postsynaptic neurons have cofired. A two-way 
arrow means two one-way connections. All the lateral connections within the same 
area are omitted for clarity: at this sparse neuronal density only lateral inhibitory 
connections survive, and they connect with all neuronal pairs in Y.
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connected areas through its two-
way connections. It seems then de-
sirable that different areas share the 
same form of area functions and the 
same form of learning mechanisms. 
Of course, every area performs a dif-
ferent type of prediction because each 
area function is different as a result 
of its own learning. The concept net-
work is highly recurrent. It’s impor-
tant that only a few neurons in each 
area fire and update so that those 
that don’t update serve as long-term 
memory for the current context. The 
interneuron competition is based on 
the goodness of the match between a 
neuron’s weight vector v = (vb, vt). Let 
x denote x/x , the unit version of 
vector x. The goodness of a match is 
measured by the preaction potential:

= ⋅ r( , , , ) ,b tv b v t v p � (2)

where =  ( , ),b tv v v  and = 

( , )p b t . The 
inner product measures the degree of 
match between the two directions v 
and p, because r(vb, b, vt, t) = cos(q), 
where q is the angle between two unit 
vectors v and p. This enables a match 
between two vectors of different 
magnitudes (for example, a weight 
vector from an object viewed indoor 
to match the same object when it’s 
viewed outdoor). The preresponse 
value ranges are [−1, 1].

It’s known in electrical engineer-
ing that positive feedbacks may cause 
uncontrollable oscillations and sys-
tem instability. Our computational 
theory for a cortical area, the lobe 
component analysis,15 uses a top-k 
firing mechanism—a highly nonlin-
ear mechanism—to explain that lat-
eral inhibitions enable neurons in 
each area Y to sort out top-k winners 
within each time step tn, n = 1, 2, 3, 
…. Let the weight vector of neuron i 
be vi = (vbi, vti), j = 1, 2, …, c, where 
vbi and vti are the weight vectors of 
the bottom-up input b and top-down 

input t of neuron i, respectively. See 
our related work for the effects of k.15 
For simplicity, considering k = 1, the 
single winner neuron j is identified by

≤ ≤
arg max ( , , , ).

i c
ti

1
j = r biv b v t � (3)

Suppose c is sufficiently large and 
the set of c synaptic vectors distrib-
utes well. Then, with sufficient train-
ing (that is, data epochs), the winner 
(nearest-neighbor) neuron j has both 
of its parts match well

vbj ≈ b and ttj ≈ t,

not counting the lengths of these vec-
tors because of the previously dis-
cussed normalization in computing 
r(vb, b, vt, t). This is like logic-AND: 
both parts must match well for the 
neuron j to win. 

We would like to have the response 
value rj to approximate the probabil-
ity for (b, t) to have vj = (vbj, vtj) as 
the nearest neighbor. For k = 1, only 
the single winner fires with response 
value rj = 1 and all other neurons in 
the area don’t fire ri = 0 for i ≠ j.

Learning
From birth, every area A of the con-
cept network learns incrementally 
in the best way. With Vˆ ( )p , the ar-
ea’s representation of input p = (b, t) 
based on the set of synaptic vectors 
V, the expected error for represent-
ing p is −E Vˆ ( )p p . In related work, 
we established that the best V that 
minimizes the expected representa-
tion error −E Vˆ ( )p p  is the set of lobe 
components V∗.15 However, V∗ re-
quires infinitely many training sam-
ples. With limited experience from 
time t0 to time tn, the incrementally 
updated set V(tn) best updates, using 
the current input p(tn) and the last 
set V(tn–1) so that its distance to V∗, 

−E V t V( ) *n , is minimized (under 
some regularity conditions)

vj ← (1 − r(nj))vj + r(nj)rj p,� (4)

where r(nj) = (1 + m)/nj is the schedule 
of optimal learning rates at every fir-
ing age nj, and rj = 1 for k = 1. (Note 
the amnesic parameter15 m—for ex-
ample, m = 2, is for vj to gradually 
disregard its estimation trajectory at 
an early experience.) The firing age 
of neuron j is incremented nj ← nj + 
1. All nonfiring neurons don’t mod-
ify their synapses nor advance their 
firing ages. Every area, X, Y, and 
Z, computes and learns in this uni-
fied way. In other words, every area 
of the concept network is the quick-
est learner from its incremental learn-
ing experience. For an explanation on 
how V(tn) is similar to and different 
from traditional self-organizing maps 
and why it’s optimally described here, 
see our related work.15

Such living experience arises from 
environmental training or autono-
mous practice. Supervision from the 
environment (for example, a teacher) 
can be occasional. During teacher 
supervision, the teacher supplies a 
desired action z (for example, pro-
nounce “cat”) for the correspond-
ing image x when the network child 
is staring at the object in a complex 
background (that is, with a correct 
ya). Otherwise, the network autono-
mously practices by self-generating z 
and using it for self-teaching, while ya 
has all 1’s.

The gain vector rjp mentioned pre-
viously determines dynamic wiring. 
Only when the postsynaptic neuron j 
and presynaptic neuron i cofire does 
the ith component in yjp become pos-
itive. As long as this component is 
positive once, the synapse from neu-
ron i to the postsynaptic neuron j be-
comes positive. Each synapse is the 
incrementally estimated probability 
for the presynaptic neuron to cofire; 
conditioned on that the postsynap-
tic neuron fires. Therefore, when the 
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postsynaptic neuron fires (that is, it’s 
the best-matched neuron), the more 
often the presynaptic neuron fires, 
the stronger the synapse.

In addition, excitatory lateral con-
nections and a larger k are good for 
earlier ages so that the weight vectors 
smoothly distribute across the typi-
cally lower dimensional manifolds in 
which the input sample p’s lie.

The following mechanic algorithm  
incrementally solves the task-nonspecific 

learning problem of the highly non-
linear, highly recurrent concept 
network:

1.	Every area initializes its adaptive 
part: N = (V, A).

2.	Do the following two steps re-
peatedly forever while interacting 
with the external environment: 
a. Every area A ∈ {X, Y, Z} 
computes area function Equa-
tion 1, where b, r, t indicates 

the bottom-up input, its own re-
sponse, and the top-down input, 
respectively. ra is the attention 
supervision vector for the Y 
area used only during learning, 
but not present for the Z area.  
b. Every area replaces: N ← N′ 
and r ← r′.

Experiments
This is a challenging open vision prob-
lem because every input image, except 
some learned unknown object patch 
somewhere in it, is always globally 
new, regardless of whether the current 
session is for training or testing.

Each Y neuron in our experiment 
has a fixed and local sensory receptive 
field in X, as shown in Figure 1. Other 
than that, every neuron connects with 
all neurons in its bottom-up area and 
top-down area (if it exists), and the 
automatic Hebbian learning of each 
synapse dynamically determines to 
which other neurons the neuron con-
nects (a zero weight means no connec-
tion). The X area directly takes pixel 
values as neuronal responses.

The example of a trained network 
in Figure 2a helps our understanding. 
A concept network requires many 
neurons in Y so that any possible fore-
ground matches at least some neu-
rons’ receptive fields. Biologically, cell 
migration, dendrite growth, and axo-
nal guidance, all activity-dependent, 
enable each neuron to have a default 
input field in X and Z, respectively. 
Every default input field (for example, 
the area of the upper location in Fig-
ure 2a) is further fine-tuned through 
the concept network algorithm so 
some connections are strengthened 
and others are weakened or cut off. 
Many neurons are needed for recep-
tive fields of many different scales at 
many different locations.

To train our example network, 
the teacher has designed a simple 

Figure 2. Schematic description of concept networks. (a) A concept network. The 
two-color illustrations for each neuron in Y indicates that each feature neuron 
is a mixture of the corresponding sensory information (upper color) and motor 
information (lower color). Lateral connections aren’t shown for simplicity. (b) 
Concept-free and concept-directed perception by a larger concept network. Each 
concept (blue) clamps (imposes) the Z area. The behavior outputs (red) are the 
corresponding concept-directed perception result. For fully self-generated concepts, 
see the homeostatic mode in Figures 3 and 4.
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language for communication with 
the network. Independent of network 
programming, the teacher has two 
concepts in mind, location and type 
(LM and TM), one for each motor 
subarea. She chooses the upper four 
motor neurons in Z in Figure 2a to 
represent the four values of the first 
concept location, and the lower four 
motor neurons in Z to represent those 
of the second concept type (see the 
matched colors in the figure). For ex-
ample, when object b is present at the 
upper location, the neurons z2 and zb 
are supervised to fire. All Y neurons 
are suppressed by supervised atten-
tion ya except the neurons 4, 5, and 
6, which compete. Suppose that the Y 
neuron 5 wins. Thus, its connections 
with z2 and zb in Z are established 
because these two motor neurons are 
imposed to cofire. All the wires are 
established this way.

When the motor area isn’t super-
vised, the network autonomously 
practices through self-supervision. If 
Y neuron 5 fires, the input must con-
tains type b at the upper location. 
This Y neuron only excites the con-
nected motor neuron z2 to report the 
location and the motor neuron zb to 
report the type. It also boosts the cor-
responding X neurons 3 and 5 as top-
down attention from Y to X, enabling 
a more steady perception. The firing 
of the two motor neurons z2 and zb 
also boosts all the connected Y neu-
rons as top-down attention from Z to 
Y. Thus, if Y has enough neurons, the 
network performance is perfect, as 
seen in Figure 2a.

We can see that the concept net-
work learns two-way signal process-
ing: bottom-up from sensory X to 
motoric Z through Y; and top-down 
from motoric Z to sensory X also 
through Y.

For experiments of the network 
on video objects, stereo perception, 
text processing, and natural language 

processing, see the review of our ex-
periments published elsewhere.12

Free Viewing: Performing 
Detection and Recognition 
Together
During free viewing, all Z neurons 
don’t fire initially. In Figure 2a, sup-
pose objects a and b are at upper and 
lower locations, respectively. Sup-
pose the top Y neurons 4 and 8 have 
almost the same preaction potential 
to win: r4 ≈ r8. Either one of the two 
neurons pops up to win in Y. Sup-
posing r4 wins, the network pays at-
tention to the upper a. The network 
outputs its location at z2 and type at 
za. For the examples in Figure 2b, this 
mode is at t1 to t4. The information 
flow is Y ⇒ LM and Y ⇒ TM, as Fig-
ure 3a illustrates. If two different (or 
the same) objects appear on the same 
image but at different locations, at-
tending either one is correct.

Type Concept: Detection
Next, suppose a type concept cue is 
available, for example, an auditory 
signal excites motor neuron zb, as il-
lustrated in Figure 3b. This indicates 
the emergence of the type b concept 
from the network. Then, Y neurons 5 
and 8 receive top-down boosts from 
zb so the balance between Y neurons 
4 and 8, mentioned previously, is bro-
ken to become r4 < r8 and the neuron 
8 wins. Then, the Y neuron 8 excites 
the location neuron z3 reporting the 
location of object b. That is, from a 
concept (for example, type b), the net-
work reasons to give another concept 
(for example, location). In Figure 2b, 
this mode is in Example 1 during t6 
to t8. The information flow is TM ⇒ 
Y ⇒ LM, while every area in the net-
work updates, as Figure 3b illustrates.

Location Concept: Recognition
Likewise, the interaction with the 
environment gives rise to a location 

concept in Z. The network gives an-
other concept (type). This mode cor-
responds to other remaining cases in 
Figure 2b. The information flow is LM 
⇒ Y ⇒ TM, while every area in the net-
work updates, as Figure 3c illustrates.

Homeostatic Concept:  
Shift Attentions
In the homeostatic (or habituated) 
mode, the network self-alters its con-
cept. The currently firing motor neu-
ron gets suppressed, simulating, for 
example, temporary local depletion 
of neural transmitters, as Figure 3d 
illustrates. Another motor neuron 
wins. A new concept emerges as the 
new winner motor neuron, and the 
network carries out this new concept, 
externally shown as attention shift.

All of these modes switch automat-
ically in a living concept network, de-
pending on whether the environment 
provides a cue for concept (location, 
type, or any other concept learned) or 
not.

Setting
More than 75 percent pixels were 
from unknown backgrounds when a 
single foreground object is present. 
The network area sizes, in terms of 
the number of neurons are as follows. 

•	 image area X: 38 × 38;
•	 internal area Y: 20 × 20 × 3 = 

1,200; and
•	motor area Z: LM area is 20 × 20 = 

400 locations, and TM area is 5 × 1 
(one for each of the five object types).

As Figure 4 shows, we used three 
views from each object for training, 
amounting to 400 × 3 = 1,200 im-
ages for each object class. We used 
two other views for each object class 
for testing at all locations. The to-
tal number of foreground patches 
for training amounts to 1,200 × 5 
= 6,000, but there are only 1,200 
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neurons in Y. This means that the Y 
area in this limited-size network has 
only 1,200/6,000 = 20 percent of the 
neurons needed to memorize all the 
foreground patches.

In addition, each area simulates the 
six-layer structure in the laminar cor-
tex for pre-screening which reduces 
top-down hallucination, as discussed 
elsewhere.17

A neural firing pattern can rep-
resent any abstract concept, 

fundamentally different from any 
atomic symbol whose meaning is 
statically handcrafted by a human 

(see a review about emergent repre-
sentations and symbolic represen-
tations in other work11). Natural 
brains tell us that such firing patterns 
that represent abstract concepts must 
be open in the agent’s effector end—
as both outputs and inputs instead of 
being hidden inside the closed brain 
skull—to be executable, testable, 
calibratable, adaptable, and enrich-
able with the physical world that in-
cludes human teachers. This is true 
regardless of whether the concepts 
represent declarable skills (for exam-
ple, writing an object type) or non-
declarable skills (for example, riding 
a bike).

The key of the theory and algo-
rithm here is how to enable the con-
cept network to develop an abstract 
concept that’s invariant to concrete 
examples (for example, small image 
patches appearing on an object) in 
infinitely many, cluttered, and new 
scenes. Because the network receives 
location and type concepts in its two 
motor areas as part of lifetime expe-
rience and the network programming 
doesn’t use any meaning of such con-
cepts, we predict that, in principle, 
a concept network can learn many 
more practical concepts (for example, 
scale1) and perform concept-directed 
perception and action. One way is to 

Figure 3. The concept network performs four tasks using the same network, depending on the context in the Z area. (a) 
Free viewing: without any Z context, perform both detection to output location and recognition to output type. (b) Object 
detection: from a type context in Z, perform object detection. (c) Object recognition: from a location context in Z, perform 
object recognition. (d) Homeostasis: suppress the current outputs from Z, and perform attention shifts through homeostasis.
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increase the number of concept zones 
in Z.1 Another way, like a human, 
is to use a more complex motor lan-
guage in which a different motor se-
quence means a different concept and 
concept value. The human program-
mer doesn’t need to know about the 
concepts that the network will end 
up learning in the future, nor its lan-
guage, because the representations 
for learned concepts are all emergent, 
including all the X, Y, and Z areas. 
The more the network learns, ex-
plores, and practices, hopefully, the 
smarter it becomes. In other work, 
Juyang Weng further discusses the 
optimality that points to the scalabil-
ity of the concept networks here.18

This work seems to have shown that 
all feed-forward computation models 
are short of those basic brain functions 

other than global pattern classifica-
tion,19,20 regardless of whether they 
use a spiking neuronal model or a fir-
ing rate model (this model applies to 
both neuronal models depending on 
the network update rate).

However, much engineering work 
is needed before a robot can learn 
fully autonomously as this theoreti-
cal model proposed. We subscribe to 
the principle of scaffolding, pioneered 
by Lev S. Vygotsky,21 a concept that’s 
well known in developmental psychol-
ogy22—early simple skills in a life as-
sist in the emergence of later complex 
skills in the life. For example, coarse 
location and type skills early in life as-
sist the autonomous development of 
finer location skills, finer type skills, 
and new scale skills later in life.23 
This new work is principled in nature, 

not for comparison with benchmarks 
from methods that weren’t for the 
right three columns of Table 1 or to 
immediately demonstrate higher con-
cepts (for example, jealousy). Like any 
new major technology that arose in 
the past, the participation of existing 
industries and the birth and growth 
of new industries are powerful driving 
forces in future applications. Such in-
dustries would produce practical con-
cept agents and robots that artificially 
live in the real, physical world to-
gether with humans to autonomously 
develop increasingly more complex 
concepts and skills. 
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