<div dir="ltr"><div><div>Dear Connectionists,<br><br></div>I have a <a href="http://journal.frontiersin.org/Journal/10.3389/fncom.2014.00160/abstract">new paper</a> "Sparsey^TM: event recognition via deep hierarchical sparse distributed codes" in Frontiers in Computational Neuroscience, which I think will be of general interest to this group. Many existing hierarchical models propose localist representations in each sub-region of each hierarchical level. In contrast, in Sparsey, all sub-regions (macrocolumns) in all of internal levels use sparse distributed codes, which confers great computational efficiency, as we argue in the paper. <a href="http://www.sparsey.com/index.html">This animation</a> of a memory trace unfolding in a 6-level Sparsey model shows the proposed general correspondence to cortex (the levels of macs would correspond to V1, V2, etc.). I look forward to any questions/feedback from the community.<br><br></div>Sincerely,<br>Rod Rinkus<br><div><div><div><br clear="all"><div><br>-- <br><div class="gmail_signature"><div dir="ltr"><div>Gerard (Rod) Rinkus, PhD<br>President,<br>rod at neurithmicsystems dot com<br><a href="http://sparsey.com" target="_blank">Neurithmic Systems LLC</a><br>275 Grove Street, Suite 2-400<br>Newton, MA 02466<br>617-997-6272<br><br>Visiting Scientist, Lisman Lab<br>Volen Center for Complex Systems<br>Brandeis University, Waltham, MA<br>grinkus at brandeis dot edu<br><a href="http://people.brandeis.edu/%7Egrinkus/" target="_blank">http://people.brandeis.edu/~grinkus/</a><a href="http://people.brandeis.edu/%7Egrinkus/" target="_blank"></a>
</div></div></div>
</div></div></div></div></div>