<div dir="ltr"><div class="gmail_default" style="font-family:arial,helvetica,sans-serif;font-size:small">CALL FOR PAPERS<br><br>SIMBAD 2015<br><br>3rd International Workshop on Similarity-Based Pattern Analysis and Recognition<br><br>October 12-14, 2015<br>Copenhagen, Denmark<br><br><a href="http://www.dsi.unive.it/%7Esimbad/2015/" target="_blank">http://www.dsi.unive.it/~simbad/2015/</a><br><br><br><br>MOTIVATIONS AND OBJECTIVES<br><br>Traditional pattern recognition and 
machine learning techniques are intimately linked to the notion of 
"feature space."  Adopting this view, each object is described in terms 
of a vector of numerical attributes and is therefore mapped to a point 
in a Euclidean vector space so that the distances between the points 
reflect the observed (dis)similarities between the respective objects.  
This kind of representation is attractive because such spaces offer 
powerful analytical as well as computational tools that are simply not 
available in other representations.  This approach, however, suffers 
from a major intrinsic limitation, which concerns the representational 
power of vectorial, feature-based descriptions.  In fact, there are 
numerous application domains where either it is not possible to find 
satisfactory features or they are inefficient for learning purposes.<br><br>In
 the last few years, interest around purely (dis)similarity-based 
techniques has grown considerably.  For example, within the supervised 
learning paradigm the well-established kernel-based methods shift the 
focus from the choice of an appropriate set of features to the choice of
 a suitable kernel, which is related to object similarities.  This shift
 in focus, however, is only partial, as the classical interpretation of 
the notion of a kernel is that it provides an implicit transformation of
 the feature space rather than a purely similarity-based 
representation.  Similarly, in the unsupervised domain, there has been 
an increasing interest around pairwise or even multiway algorithms, such
 as spectral and graph-theoretic clustering methods, which avoid the use
 of features altogether.<br><br>By departing from vector-space 
representations one is confronted with the challenging problem of 
dealing with (dis)similarities that do not necessarily possess the 
Euclidean behavior or do not even obey the requirements of a metric.  
The lack of such properties undermines the very foundations of 
traditional pattern recognition and machine learning theories and 
algorithms and poses totally new theoretical and computational questions
 and challenges.<br><br>The aim of this workshop, following those held 
in Venice and York, is to consolidate research efforts in this area and 
to provide an informal discussion forum for researchers and 
practitioners interested in this important yet diverse subject.  We aim 
at covering a wide range of problems and perspectives, from supervised 
to unsupervised learning, from generative to discriminative models, and 
from theoretical issues to real-world applications.<br><br>Original, 
unpublished papers dealing with these issues are solicited.  Topics of 
interest include (but are of course not limited to):<br><br>- Embedding and embeddability<br>- Graph spectra and spectral geometry<br>- Indefinite and structural kernels<br>- Game-theoretic models of pattern recognition<br>- Characterization of nonmetric behavior<br>- Foundational issues<br>- Measures of metric violations<br>- Learning and combining (dis)similarities<br>- Multiple-instance learning and other set-based approaches<br>- Applications<br><br><br>PAPER and ABSTRACT SUBMISSION<br><br>We allow three types of contributions.<br><br>Regular papers (not exceeding 16 pages LNCS format) must be submitted electronically.  The submission site can be found through <a href="http://www.dsi.unive.it/%7Esimbad/2015/index.php/pages/submission" target="_blank">http://www.dsi.unive.it/~simbad/2015/index.php/pages/submission</a>. 
 All submissions will be subject to a rigorous peer-review process.  
Accepted papers will be published in Springer's Lecture Notes in 
Computer Science (LNCS) series.<br><br>In addition to regular, original 
contributions, we also solicit presentation of papers (in any LaTeX 
format, no page restriction) that have been recently published 
elsewhere.  These papers will undergo the same review process as regular
 ones. If accepted, they will be presented at the workshop, but only an 
abstract will be published. Submission of such contribution requires the
 additional submission of a two-page abstract in LNCS format with the 
original paper submitted as supplementary material.<br><br>Finally, we 
encourage the submission of two-page abstracts in general.  These could 
contain preliminary results, topics for discussion, appeals for novel 
research directions, or anything else that suits the aim of SIMBAD and 
underlines the workshop character.  Upon acceptance, these submissions 
will be assigned a poster presentation and the abstract will be 
published.<br><br>Submission implies the willingness of at least one of the authors to register and present the paper on acceptance.<br><br><br>INVITED SPEAKERS<br><br>TBA<br><br><br>IMPORTANT DATES<br><br>Submission of paper abstract: March 15, 2015<br>Submission of the final version of the paper: March 30, 2015<br>Submission of extended abstract only: April 15<br>Notifications: May 30, 2015<br>Camera-ready due: June 30, 2015<br>Conference: October 12-14, 2015<br><br><br>ORGANIZATION<br><br>Program Chairs<br>  Aasa Feragen, University of Copenhagen, Denmark<br>  Marco Loog, Delft University of Technology, The Netherlands<br>  Marcello Pelillo, University of Venice, Italy<br><br>Steering Committee<br>
   Joachim Buhmann, ETH Zurich, Switzerland<br>
   Robert Duin, Delft University of Technology, The Netherlands<br>
   Mario Figueiredo, Technical University of Lisbon, Portugal<br>
   Edwin Hancock, University of <span>York</span>, UK<br>
   Vittorio Murino, Italian Institute of Technology, Italy<br>
   Marcello Pelillo (chair), University of Venice, Italy<br><br>Program Committee [provisional]<br>  Ethem Alpaydin, Bogazici University, Turkey<br>  ChloÈ-Agathe Azencott, Mines Paris Tech, France<br>  Manuele Bicego, University of Verona, Italy<br>  Joachim Buhmann, ETH Zurich, Switzerland<br>  Tiberio Caetano, NICTA, Australia<br>  Umberto Castellani, University of Verona, Italy<br>  Veronika Cheplygina, Erasmus Medical Center, The Netherlands<br>  Aykut Erdem, Hacettepe University, Turkey<br>  Francisco Escolano, University of Alicante, Spain<br>  Mario Figueiredo, Technical University of Lisbon, Portugal<br>  Ana Fred, Technical University of Lisbon, Portugal<br>  Edwin Hancock, University of York, UK<br>  Soren Hauberg, Technical University of Denmark, Denmark<br>  Christian Igel, University of Copenhagen, Denmark<br>  Brijnesh Jain, Technical University of Berlin, Germany<br>  Robert Krauthgamer, The Weizmann Institute of Science, Israel<br>  Walter Kropatsch, Vienna University of Technology, Austria<br>  Xuelong Li, Chinese Academy of Sciences, China<br>  Yingyu Liang, Princeton University, USA<br>  Vittorio Murino, Italian Institute of Technology, Italy<br>  Antonio Robles-Kelly, NICTA, Australia<br>  Fabio Roli, University of Cagliari, Italy<br>  Luca Rossi, University of Birmingham, UK<br>  Samuel Rota Bulo', Bruno Kessler Foundation, Italy<br>  Volker Roth, University of Basel, Switzerland<br>  Anastasios Sidiropoulos, Ohio State University, USA<br>  Stefan Sommer, University of Copenhagen, Denmark<br>  David Tax, Delft University of Technology, The Netherlands<br>  Andrea Torsello, University of Venice, Italy<br>  Richard Wilson, University of York, UK<br><br><br></div><div><div class="gmail_signature">---<br>Marcello Pelillo, FIEEE, FIAPR<br>Professor of Computer Science<br>Computer Vision and Pattern Recognition Lab, Director<br>Center for Knowledge, Interaction and Intelligent Systems (KIIS), Director<br><br>DAIS<br>Ca' Foscari University, Venice<br>Via Torino 155, 30172 Venezia Mestre, Italy<br>Tel: (39) 041 2348.440<br>Fax: (39) 041 2348.419<br>E-mail: <a href="mailto:marcello.pelillo@gmail.com" target="_blank">marcello.pelillo@gmail.com</a><br>URL: <a href="http://www.dsi.unive.it/~pelillo" target="_blank">http://www.dsi.unive.it/~pelillo</a></div></div>
</div>