<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    Dear Danko,<br>
    <br>
    Much of your views are consistent to our DN model, an overarching
    model for developing brains.<br>
    <br>
    > The system always adjusts--to everything(!)<br>
    <br>
    Yes, since the system does not know which is new and which is old. 
    However, the amount of adjustment is different. <br>
    There is also a novelty system imbedded into the basic brain
    circuits, realized by neurotransmitters such as ACh and NE.<br>
    <br>
    > The only simple input-output mappings that take place are the
    sensory-motor loops that execute the actual behavior.<br>
    <br>
    Sorry, I do not quite agree.  All sensory-motor loops that execute
    the actual behavior are not simple input-output mappings.<br>
    They affect all related brain representations, including perception,
    cognition and motivation, as the DN system implies.<br>
    <br>
    > If the current goals of the system requires treating a slightly
    novel stimulus as new, it will be treated as "new". However, if a
    slight change in the stimulus features does not make a difference
    for the current goals and the situation, than the stimulus will be
    treated as "old".<br>
    <br>
    The brain does not seem to have an if-then-else circuit like your
    above statement seems to suggest.  Regardless new or old, <br>
    the brain uses basically the same set of mechanisms.   Only the
    outcome is always different.<br>
    <br>
    > Importantly, practopoietic theory is not formulated in terms of
    neurons (inhibition, excitation, connections, changes of synaptic
    weights, etc.). <br>
    <br>
    Then, does it fall into the trap of symbolic representations?   How
    does the theory explain the development of various types of
    invariance?<br>
    DN suggests that various type of invariance arise from experience,
    not in the human genes.  Thus, convolution networks (including<br>
    the Creceptron that my co-authors and I used before) for locational
    invariance are GROSSLY wrong for the brain. <br>
    <br>
    -John<br>
    <br>
    <div class="moz-cite-prefix">On 4/14/14 6:51 AM, Danko Nikolic
      wrote:<br>
    </div>
    <blockquote cite="mid:534BBDC2.4090406@gmail.com" type="cite">
      <meta content="text/html; charset=ISO-8859-1"
        http-equiv="Content-Type">
      <div class="moz-cite-prefix">Dear all,<br>
        <br>
          It has been very interesting to follow the discussion on the
        functioning of ART, stability-plasticity dilemma and the related
        issues. In that context, I would like to point to an exciting
        property of the practopoietic theory, which enables us to
        understand what is needed for a general solution to the problems
        similar to the stability-plasticity dilemma. <br>
        <br>
        The issue of stability-plasticity dilemma can be described as a
        problem of deciding when a new category of a stimulus needs to
        be created and the system has to be adjusted as opposed to
        deciding to treat the stimulus as old and familiar and thus, not
        needing to adjust. Practopoietic theory helps us understand how 
        a general solution can be implemented for deciding whether to
        use old types of behavior or to come up with new ones. This is
        possible in a so-called "T_3 system" in which a process called
        "anapoiesis" takes place. When a system is organized in such a
        T_3 way, every stimulus, old or new, is treated in the same
        fashion, i.e., as new. The system always adjusts--to
        everything(!)--even to stimuli that have been seen thousands of
        times. There is never a simple direct categorization (or pattern
        recognition) in which a mathematical mapping would take place
        from input vectors to output vectors, as traditionally
        implemented in multi-layer neural networks. <br>
        <br>
        Rather the system readjusts itself continuously to prepare for
        interactions with the surrounding world. The only simple
        input-output mappings that take place are the sensory-motor
        loops that execute the actual behavior. The internal processes
        corresponding to perception, recognition, categorization etc.
        are implemented by the mechanisms of internal system adjustments
        (based on anapoiesis). These mechanisms create new sensory-motor
        loops, which are then most similar to the traditional mapping
        operations. The difference between old and new stimuli (i.e.,
        familiar and unfamiliar) is detectable in the behavior of the
        system only because the system adjusts quicker to the older that
        to the newer stimuli. <br>
        <br>
        The claimed advantage of such a T_3 practopoietic system is that
        only such a system can become generally intelligent as a whole
        and behave adaptively and consciously with understanding of what
        is going on around; The system forms a general "adjustment
        machine" that can become aware of its surroundings and can be
        capable of interpreting the situation appropriately to decide on
        the next action. Thus, the perceptual dilemma of stability vs.
        plasticity is converted into a general understanding of the
        current situation and the needs of the system. If the current
        goals of the system requires treating a slightly novel stimulus
        as new, it will be treated as "new". However, if a slight change
        in the stimulus features does not make a difference for the
        current goals and the situation, than the stimulus will be
        treated as "old".<br>
        <br>
        Importantly, practopoietic theory is not formulated in terms of
        neurons (inhibition, excitation, connections, changes of
        synaptic weights, etc.). Instead, the theory is formulated much
        more elegantly--in terms of interactions between cybernetic
        control mechanisms organized into a specific type of hierarchy
        (poietic hierarchy). This abstract formulation is extremely
        helpful for two reasons. First, it enables one to focus on the
        most important functional aspects and thus, to understand much
        easier the underlying principles of system operations. Second,
        it tells us what is needed to create intelligent behavior using
        any type of implementation, neuronal or non-neuronal.<br>
        <br>
        I hope this will be motivating enough to give practopoiesis a
        read.<br>
        <br>
        With best regards,<br>
        <br>
        Danko<br>
        <br>
        <br>
        <br>
        Link:<br>
        <a moz-do-not-send="true" class="moz-txt-link-freetext"
          href="http://www.danko-nikolic.com/practopoiesis/">http://www.danko-nikolic.com/practopoiesis/</a><br>
        <br>
        <br>
        <br>
        On 4/11/14 2:42 AM, Tsvi Achler wrote:<br>
      </div>
      <blockquote
cite="mid:CANdH7hkv2agxn4sb2iu5U4knmosAwfyTKftR-9-Q5sOnoTYf+A@mail.gmail.com"
        type="cite">
        <div dir="ltr">I can't comment on most of this, but I am not
          sure if all models of sparsity and sparse coding fall into the
          connectionist realm either because some make statistical
          assumptions.
          <div>-Tsvi</div>
        </div>
        <div class="gmail_extra"> <br>
          <br>
          <div class="gmail_quote">On Tue, Apr 8, 2014 at 9:19 PM,
            Juyang Weng <span dir="ltr"><<a moz-do-not-send="true"
                href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>></span>
            wrote:<br>
            <blockquote class="gmail_quote" style="margin:0 0 0
              .8ex;border-left:1px #ccc solid;padding-left:1ex">
              <div bgcolor="#FFFFFF" text="#000000"> Tavi:<br>
                <br>
                Let me explain a little more detail:<br>
                <br>
                There are two large categories of biological neurons,
                excitatory and inhibitory.   Both are developed through
                mainly signal statistics, <br>
                not specified primarily by the genomes.   Not all people
                agree with my this point, but please tolerate my this
                view for now.   <br>
                I gave a more detailed discussion on this view in my NAI
                book. <br>
                <br>
                The main effect of inhibitory connections is to reduce
                the number of firing neurons (David Field called it
                sparse coding), with the help of <br>
                excitatory connections.  This sparse coding is important
                because those do not fire are long term memory of the
                area at this point of time.<br>
                My this view is different from David Field.  He wrote
                that sparse coding is for the current representations. 
                I think sparse coding is <br>
                necessary for long-term memory. Not all people agree
                with my this point, but please tolerate my this view for
                now.   <br>
                <br>
                However, this reduction requires very fast parallel
                neuronal updates to avoid uncontrollable large-magnitude
                oscillations.  <br>
                Even with the fast biological parallel neuronal updates,
                we still see slow but small-magnitude oscillations such
                as the <br>
                well-known theta waves and alpha waves.   My view is
                that such slow but small-magnitude oscillations are side
                effects of <br>
                excitatory and inhibitory connections that form many
                loops, not something really desirable for the brain
                operation (sorry, <br>
                Paul Werbos).  Not all people agree with my this point,
                but please tolerate my this view for now. <br>
                <br>
                Therefore, as far as I understand, all computer
                simulations for spiking neurons are not showing major
                brain functions<br>
                because they have to deal with the slow oscillations
                that are very different from the brain's, e.g., as Dr.
                Henry Markram reported<br>
                (40Hz?). <br>
                <br>
                The above discussion again shows the power and necessity
                of an overarching brain theory like that in my NAI
                book.  <br>
                Those who only simulate biological neurons using
                superficial biological phenomena are not going to
                demonstrate <br>
                any major brain functions.  They can talk about signal
                statistics from their simulations, but signal statistics
                are far from brain functions. <br>
                <br>
                -John
                <div>
                  <div class="h5"><br>
                    <br>
                    <div>On 4/8/14 1:30 AM, Tsvi Achler wrote:<br>
                    </div>
                    <blockquote type="cite">
                      <div dir="ltr">Hi John,
                        <div>ART evaluates distance between the
                          contending representation and the current
                          input through vigilance.  If they are too far
                          apart, a poor vigilance signal will be
                          triggered.</div>
                        <div>The best resonance will be achieved when
                          they have the least amount of distance.</div>
                        <div>If in your model, K-nearest neighbors is
                          used without a neural equivalent, then your
                          model is not quite in the spirit of a
                          connectionist model.</div>
                        <div>For example, Bayesian networks do a great
                          job emulating brain behavior, modeling the
                          integration of priors. and has been invaluable
                          to model cognitive studies.  However they
                          assume a statistical configuration of
                          connections and distributions which is not
                          quite known how to emulate with neurons.  Thus
                          pure Bayesian models are also questionable in
                          terms of connectionist modeling.  But some
                          connectionist models can emulate some
                          statistical models for example see section 2.4
                           in Thomas & McClelland's chapter in Sun's
                          2008 book (<a moz-do-not-send="true"
href="http://www.psyc.bbk.ac.uk/people/academic/thomas_m/TM_Cambridge_sub.pdf"
                            target="_blank">http://www.psyc.bbk.ac.uk/people/academic/thomas_m/TM_Cambridge_sub.pdf</a>).</div>
                        <div>I am not suggesting <span
                            style="font-size:13.333333969116211px;font-family:arial,sans-serif">Hodgkin-Huxley</span> level


                          detailed neuron models, however connectionist
                          models should have their connections
                          explicitly defined. </div>
                        <div>Sincerely,</div>
                        <div>-Tsvi</div>
                        <div><br>
                        </div>
                      </div>
                      <div class="gmail_extra"><br>
                        <br>
                        <div class="gmail_quote">On Mon, Apr 7, 2014 at
                          10:58 AM, Juyang Weng <span dir="ltr"><<a
                              moz-do-not-send="true"
                              href="mailto:weng@cse.msu.edu"
                              target="_blank">weng@cse.msu.edu</a>></span>
                          wrote:<br>
                          <blockquote class="gmail_quote"
                            style="margin:0 0 0 .8ex;border-left:1px
                            #ccc solid;padding-left:1ex">
                            <div bgcolor="#FFFFFF" text="#000000"> Tsvi,<br>
                              <br>
                              Note that ART uses a vigilance value to
                              pick up the first "acceptable" match in
                              its sequential bottom-up and top-down
                              search.<br>
                              I believe that was Steve meant when he
                              mentioned vigilance.    <br>
                              <br>
                              Why do you think "ART as a neural way to
                              implement a K-nearest neighbor
                              algorithm"?  <br>
                              If not all the neighbors have sequentially
                              participated,<br>
                              how can ART find the nearest neighbor, let
                              alone K-nearest neighbor?<br>
                              <br>
                              Our DN uses an explicit k-nearest
                              mechanism to find the k-nearest neighbors
                              in every network update, <br>
                              to avoid the problems of slow resonance in
                              existing models of spiking neuronal
                              networks.   <br>
                              The explicit k-nearest mechanism itself is
                              not meant to be biologically plausible, <br>
                              but it gives a computational advantage for
                              software simulation of large networks <br>
                              at a speed slower than 1000 network
                              updates per second.<br>
                              <br>
                              I guess that more detailed molecular
                              simulations of individual neuronal spikes
                              (such as using the Hodgkin-Huxley model of<br>
                              a neuron, using the <a
                                moz-do-not-send="true"
                                href="http://www.neuron.yale.edu/neuron/"
                                target="_blank">NEURON software,</a> or
                              like <a moz-do-not-send="true"
                                href="http://bluebrain.epfl.ch/"
                                target="_blank">the Blue Brain project</a>
                              directed by respected Dr. Henry Markram) <br>
                              are very useful for showing some detailed
                              molecular, synaptic, and neuronal
                              properties.<br>
                              However, they miss necessary
                              brain-system-level mechanisms so much that
                              it is difficult for them <br>
                              to show major brain-scale functions <br>
                              (such as learning to recognize objects and
                              detection of natural objects directly from
                              natural cluttered scenes). <br>
                              <br>
                              According to my understanding, if one uses
                              a detailed neuronal model for each of a
                              variety of neuronal types and<br>
                              connects those simulated neurons of
                              different types according to a diagram of
                              Brodmann areas, <br>
                              his simulation is NOT going to lead to any
                              major brain function.  <br>
                              He still needs brain-system-level
                              knowledge such as that taught in the BMI
                              871 course. <br>
                              <br>
                              -John <br>
                              <div>
                                <div> <br>
                                  <div>On 4/7/14 8:07 AM, Tsvi Achler
                                    wrote:<br>
                                  </div>
                                  <blockquote type="cite">
                                    <div dir="ltr">
                                      <div>Dear Steve, John</div>
                                      I think such discussions are great
                                      to spark interests in feedback
                                      (output back to input) such models
                                      which I feel should be given much
                                      more attention.
                                      <div>In this vein it may be better
                                        to discuss more of the details
                                        here than to suggest to read a
                                        reference.</div>
                                      <div><br>
                                      </div>
                                      <div>Basically I see ART as a
                                        neural way to implement a
                                        K-nearest neighbor algorithm.
                                         Clearly the way ART overcomes
                                        the neural hurdles is immense
                                        especially in figuring out how
                                        to coordinate neurons.  However
                                        it is also important to
                                        summarize such methods in
                                        algorithmic terms  which I
                                        attempt to do here (and please
                                        comment/correct).</div>
                                      <div>Instar learning is used to
                                        find the best weights for quick
                                        feedforward recognition without
                                        too much resonance (otherwise
                                        more resonance will be needed).
                                         Outstar learning is used to
                                        find the expectation of the
                                        patterns.  The resonance
                                        mechanism evaluates distances
                                        between the "neighbors"
                                        evaluating how close differing
                                        outputs are to the input pattern
                                        (using the expectation).  By
                                        choosing one winner the network
                                        is equivalent to a 1-nearest
                                        neighbor model.  If you open it
                                        up to more winners (eg k
                                        winners) as you suggest  then it
                                        becomes a k-nearest neighbor
                                        mechanism.</div>
                                      <div><br>
                                      </div>
                                      <div>Clearly I focused here on the
                                        main ART modules and did not
                                        discuss other additions.  But I
                                        want to just focus on the main
                                        idea at this point.</div>
                                      <div>Sincerely,</div>
                                      <div>-Tsvi</div>
                                    </div>
                                    <div class="gmail_extra"> <br>
                                      <br>
                                      <div class="gmail_quote">On Sun,
                                        Apr 6, 2014 at 1:30 PM, Stephen
                                        Grossberg <span dir="ltr"><<a
                                            moz-do-not-send="true"
                                            href="mailto:steve@cns.bu.edu"
                                            target="_blank">steve@cns.bu.edu</a>></span>
                                        wrote:<br>
                                        <blockquote class="gmail_quote"
                                          style="margin:0 0 0
                                          .8ex;border-left:1px #ccc
                                          solid;padding-left:1ex">
                                          <div
                                            style="word-wrap:break-word"><font
                                              face="Arial" size="5">Dear
                                              John,</font>
                                            <div><font face="Arial"
                                                size="5"><br>
                                              </font></div>
                                            <div><font face="Arial"
                                                size="5">Thanks for your
                                                questions. I reply
                                                below.</font></div>
                                            <div> <font face="Arial"
                                                size="5"><br>
                                              </font>
                                              <div>
                                                <div>
                                                  <div><font
                                                      face="Arial"
                                                      size="5">On Apr 5,
                                                      2014, at 10:51 AM,
                                                      Juyang Weng wrote:</font></div>
                                                  <font face="Arial"
                                                    size="5"><br>
                                                  </font>
                                                  <blockquote
                                                    type="cite">
                                                    <div
                                                      bgcolor="#FFFFFF"
                                                      text="#000000"><font
                                                        face="Arial"
                                                        size="5"> Dear
                                                        Steve,<br>
                                                        <br>
                                                        This is one of
                                                        my long-time
                                                        questions that I
                                                        did not have a
                                                        chance to ask
                                                        you when I met
                                                        you many times
                                                        before. <br>
                                                        But they may be
                                                        useful for some
                                                        people on this
                                                        list.   <br>
                                                        Please accept my
                                                        apology of my
                                                        question implies
                                                        any false
                                                        impression that
                                                        I did not
                                                        intend.<br>
                                                        <br>
                                                        (1) Your
                                                        statement below
                                                        seems to have
                                                        confirmed my
                                                        understanding: 
                                                        <br>
                                                        Your top-down
                                                        process in ART
                                                        in the late
                                                        1990's is
                                                        basically for
                                                        finding an
                                                        acceptable match
                                                        <br>
                                                        between the
                                                        input feature
                                                        vector and the
                                                        stored feature
                                                        vectors
                                                        represented by
                                                        neurons (not
                                                        meant for the
                                                        nearest match).
                                                        <br>
                                                      </font></div>
                                                  </blockquote>
                                                  <div><font
                                                      face="Arial"
                                                      size="5"><br>
                                                    </font></div>
                                                </div>
                                                <font face="Arial"
                                                  size="5">ART has
                                                  developed a lot since
                                                  the 1990s. A
                                                  non-technical but
                                                  fairly comprehensive
                                                  review article was
                                                  published in 2012 in <i>Neural

                                                    Networks</i> and can
                                                  be found at <a
                                                    moz-do-not-send="true"
href="http://cns.bu.edu/%7Esteve/ART.pdf" target="_blank">http://cns.bu.edu/~steve/ART.pdf</a>.</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">I do not
                                                  think about the
                                                  top-down process in
                                                  ART in quite the way
                                                  that you state above.
                                                  My reason for this is
                                                  summarized by the
                                                  acronym CLEARS for the
                                                  processes of
                                                  Consciousness,
                                                  Learning, Expectation,
                                                  Attention, Resonance,
                                                  and Synchrony. </font><span
style="font-family:Arial;font-size:x-large">All the CLEARS processes
                                                  come into this story,
                                                  and </span><span
                                                  style="font-family:Arial;font-size:x-large">ART

                                                  top-down mechanisms
                                                  contribute to all of
                                                  them. For me, the most
                                                  fundamental issues
                                                  concern how ART
                                                  dynamically
                                                  self-stabilizes the
                                                  memories that are
                                                  learned within the
                                                  model's bottom-up
                                                  adaptive filters and
                                                  top-down
                                                  expectations. </span></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">In
                                                  particular, during
                                                  learning, a big enough
                                                  mismatch can lead to
                                                  hypothesis testing and
                                                  search for a new, or
                                                  previously learned,
                                                  category that leads to
                                                  an acceptable match.
                                                  The criterion for what
                                                  is "big enough
                                                  mismatch" or
                                                  "acceptable match" is
                                                  regulated by a
                                                  vigilance parameter
                                                  that can itself vary
                                                  in a state-dependent
                                                  way.</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">After
                                                  learning occurs, a
                                                  bottom-up input
                                                  pattern typically
                                                  directly selects the
                                                  best-matching
                                                  category, without any
                                                  hypothesis testing or
                                                  search. And even if
                                                  there is a reset due
                                                  to a large initial
                                                  mismatch with a
                                                  previously active
                                                  category, a single
                                                  reset event may lead
                                                  directly to a matching
                                                  category that can
                                                  directly resonate with
                                                  the data. </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">I should note
                                                  that all of the
                                                  foundational
                                                  predictions of ART now
                                                  have substantial
                                                  bodies of
                                                  psychological and
                                                  neurobiological data
                                                  to support them. See
                                                  the review article if
                                                  you would like to read
                                                  about them.</font></div>
                                              <div>
                                                <div><font face="Arial"
                                                    size="5"><br>
                                                  </font>
                                                  <blockquote
                                                    type="cite">
                                                    <div
                                                      bgcolor="#FFFFFF"
                                                      text="#000000"><font
                                                        face="Arial"
                                                        size="5"> The
                                                        currently active
                                                        neuron is the
                                                        one being
                                                        examined by the
                                                        top down process<br>
                                                      </font></div>
                                                  </blockquote>
                                                  <div><font
                                                      face="Arial"
                                                      size="5"><br>
                                                    </font></div>
                                                </div>
                                                <font face="Arial"
                                                  size="5">I'm not sure
                                                  what you mean by
                                                  "being examined", but
                                                  perhaps my comment
                                                  above may deal with
                                                  it.</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">I should
                                                  comment, though, about
                                                  your use of the word
                                                  "currently active
                                                  neuron". I assume that
                                                  you mean at the
                                                  category level. </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">In this
                                                  regard, there are two
                                                  ART's. The first
                                                  aspect of ART is as a
                                                  cognitive and neural
                                                  theory whose scope,
                                                  which includes
                                                  perceptual, cognitive,
                                                  and adaptively timed
                                                  cognitive-emotional
                                                  dynamics, among other
                                                  processes, is
                                                  illustrated by the
                                                  above referenced 2012
                                                  review article in <i>Neural

                                                    Networks</i>. In the
                                                  biological theory,
                                                  there is no general
                                                  commitment to just one
                                                  "currently active
                                                  neuron". One always
                                                  considers the neuronal
                                                  population, or
                                                  populations, that
                                                  represent a learned
                                                  category. Sometimes,
                                                  but not always, a
                                                  winner-take-all
                                                  category is chosen. </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">The 2012
                                                  review article
                                                  illustrates some of
                                                  the large data bases
                                                  of psychological and
                                                  neurobiological data
                                                  that have been
                                                  explained in a
                                                  principled way,
                                                  quantitatively
                                                  simulated, and
                                                  successfully predicted
                                                  by ART over a period
                                                  of decades. ART-like
                                                  processing is,
                                                  however, certainly not
                                                  the only kind of
                                                  computation that may
                                                  be needed to
                                                  understand how the
                                                  brain works. The
                                                  paradigm called
                                                  Complementary
                                                  Computing that I
                                                  introduced awhile ago
                                                  makes precise the
                                                  sense in which ART may
                                                  be just one kind of
                                                  dynamics supported by
                                                  advanced brains. This
                                                  is also summarized in
                                                  the review article.<br>
                                                </font>
                                                <div><font face="Arial"
                                                    size="5"><br>
                                                  </font></div>
                                                <div><font face="Arial"
                                                    size="5">The second
                                                    aspect of ART is as
                                                    a series of
                                                    algorithms that
                                                    mathematically
                                                    characterize key ART
                                                    design principles
                                                    and mechanisms in a
                                                    focused setting, and
                                                    provide algorithms
                                                    for large-scale
                                                    applications in
                                                    engineering and
                                                    technology. ARTMAP,
                                                    fuzzy ARTMAP, and
                                                    distributed ARTMAP
                                                    are among these, all
                                                    of them developed
                                                    with Gail Carpenter.
                                                    Some of these
                                                    algorithms use
                                                    winner-take-all
                                                    categories to enable
                                                    the proof of
                                                    mathematical
                                                    theorems that
                                                    characterize how
                                                    underlying design
                                                    principles work. In
                                                    contrast, the
                                                    distributed ARTMAP
                                                    family of
                                                    algorithms,
                                                    developed by Gail
                                                    Carpenter and her
                                                    colleagues, allows
                                                    for distributed
                                                    category
                                                    representations
                                                    without losing the
                                                    benefits of fast,
                                                    incremental,
                                                    self-stabilizing
                                                    learning and
                                                    prediction in
                                                    response to a large
                                                    non-stationary
                                                    databases that can
                                                    include many
                                                    unexpected events. </font></div>
                                                <div><font face="Arial"
                                                    size="5"><br>
                                                  </font></div>
                                                <div><font face="Arial"
                                                    size="5">See, e.g., <a
moz-do-not-send="true"
                                                      href="http://techlab.bu.edu/members/gail/articles/115_dART_NN_1997_.pdf"
                                                      target="_blank">http://techlab.bu.edu/members/gail/articles/115_dART_NN_1997_.pdf</a>
                                                    and <a
                                                      moz-do-not-send="true"
href="http://techlab.bu.edu/members/gail/articles/155_Fusion2008_CarpenterRavindran.pdf"
                                                      target="_blank">http://techlab.bu.edu/members/gail/articles/155_Fusion2008_CarpenterRavindran.pdf</a>.</font></div>
                                                <div><font face="Arial"
                                                    size="5"><br>
                                                  </font></div>
                                                <div><font face="Arial"
                                                    size="5">I should
                                                    note that FAST
                                                    learning is a
                                                    technical concept:
                                                    it means that each
                                                    adaptive weight can
                                                    converge to its new
                                                    equilibrium value on
                                                    EACH learning trial.
                                                    That is why ART
                                                    algorithms can often
                                                    successfully carry
                                                    out one-trial
                                                    incremental learning
                                                    of a data base. This
                                                    is not true of many
                                                    other algorithms,
                                                    such as back
                                                    propagation,
                                                    simulated annealing,
                                                    and the like, which
                                                    all experience
                                                    catastrophic
                                                    forgetting if they
                                                    try to do fast
                                                    learning. Almost all
                                                    other learning
                                                    algorithms need to
                                                    be run using slow
                                                    learning, that
                                                    allows only a small
                                                    increment in the
                                                    values of adaptive
                                                    weights on each
                                                    learning trial, to
                                                    avoid massive memory
                                                    instabilities, and
                                                    work best in
                                                    response to
                                                    stationary data.
                                                    Such algorithms
                                                    often fail to detect
                                                    important rare
                                                    cases, among other
                                                    limitations. ART can
                                                    provably learn in
                                                    either the fast or
                                                    slow mode in
                                                    response to
                                                    non-stationary data.</font></div>
                                                <div>
                                                  <div><font
                                                      face="Arial"
                                                      size="5"><br>
                                                    </font></div>
                                                  <blockquote
                                                    type="cite">
                                                    <div
                                                      bgcolor="#FFFFFF"
                                                      text="#000000"><font
                                                        face="Arial"
                                                        size="5"> in a
                                                        sequential
                                                        fashion: one
                                                        neuron after
                                                        another, until
                                                        an acceptable
                                                        neuron is found.<br>
                                                        <br>
                                                        (2) The input to
                                                        the ART in the
                                                        late 1990's is
                                                        for a single
                                                        feature vector
                                                        as a monolithic
                                                        input.  <br>
                                                        By monolithic, I
                                                        mean that all
                                                        neurons take the
                                                        entire input
                                                        feature vector
                                                        as input.   <br>
                                                        I raise this
                                                        point here
                                                        because neuron
                                                        in ART in the
                                                        late 1990's does
                                                        not have an
                                                        explicit local
                                                        sensory
                                                        receptive field
                                                        (SRF), <br>
                                                        i.e., are fully
                                                        connected from
                                                        all components
                                                        of the input
                                                        vector.   A
                                                        local SRF means
                                                        that each neuron
                                                        is only
                                                        connected to a
                                                        small region <br>
                                                        in an input
                                                        image. <br>
                                                      </font></div>
                                                  </blockquote>
                                                  <div><font
                                                      face="Arial"
                                                      size="5"><br>
                                                    </font></div>
                                                </div>
                                                <font face="Arial"
                                                  size="5">Various ART
                                                  algorithms for
                                                  technology do use
                                                  fully connected
                                                  networks. They
                                                  represent a
                                                  single-channel case,
                                                  which is often
                                                  sufficient in
                                                  applications and which
                                                  simplifies
                                                  mathematical proofs.
                                                  However, the
                                                  single-channel case
                                                  is, as its name
                                                  suggests, not a
                                                  necessary constraint
                                                  on ART design. </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">In addition,
                                                  many ART biological
                                                  models do not restrict
                                                  themselves to the
                                                  single-channel case,
                                                  and do have receptive
                                                  fields. These include
                                                  the LAMINART family of
                                                  models that predict
                                                  functional roles for
                                                  many identified cell
                                                  types in the laminar
                                                  circuits of cerebral
                                                  cortex. These models
                                                  illustrate how
                                                  variations of a shared
                                                  laminar circuit design
                                                  can carry out very
                                                  different intelligent
                                                  functions, such as 3D
                                                  vision (e.g., 3D
                                                  LAMINART), speech and
                                                  language (e.g.,
                                                  cARTWORD), and
                                                  cognitive information
                                                  processing (e.g., LIST
                                                  PARSE). They are all
                                                  summarized in the 2012
                                                  review article, with
                                                  the archival articles
                                                  themselves on my web
                                                  page <a
                                                    moz-do-not-send="true"
href="http://cns.bu.edu/%7Esteve" target="_blank">http://cns.bu.edu/~steve</a>. </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">The existence
                                                  of these laminar
                                                  variations-on-a-theme
                                                  provides an existence
                                                  proof for the exciting
                                                  goal of designing a
                                                  family of chips whose
                                                  specializations can
                                                  realize all aspects of
                                                  higher intelligence,
                                                  and which can be
                                                  consistently connected
                                                  because they all share
                                                  a similar underlying
                                                  design. Work on
                                                  achieving this goal
                                                  can productively
                                                  occupy lots of
                                                  creative modelers and
                                                  technologists for many
                                                  years to come.</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">I hope that
                                                  the above replies
                                                  provide some relevant
                                                  information, as well
                                                  as pointers for
                                                  finding more.</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">Best,</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5">Steve</font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font></div>
                                              <div>
                                                <blockquote type="cite">
                                                  <div bgcolor="#FFFFFF"
                                                    text="#000000">
                                                    <div> <font
                                                        face="Arial"
                                                        size="5"><br>
                                                        My apology again
                                                        if my
                                                        understanding
                                                        above has errors
                                                        although I have
                                                        examined the
                                                        above two points
                                                        carefully <br>
                                                        through multiple
                                                        your papers.<br>
                                                        <br>
                                                        Best regards,<br>
                                                        <br>
                                                        -John<br>
                                                        <br>
                                                      </font></div>
                                                    <div>
                                                      <pre cols="72"><font face="Arial"><span style="font-size:18px">Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: <a moz-do-not-send="true" href="tel:517-353-4388" value="+15173534388" target="_blank">517-353-4388</a>
Fax: <a moz-do-not-send="true" href="tel:517-432-1061" value="+15174321061" target="_blank">517-432-1061</a>
Email: <a moz-do-not-send="true" href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" href="http://www.cse.msu.edu/%7Eweng/" target="_blank">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</span></font></pre>
                                                    </div>
                                                  </div>
                                                </blockquote>
                                              </div>
                                              <div><font face="Arial"
                                                  size="5"><br>
                                                </font>
                                                <div> <font
                                                    face="Arial"
                                                    size="5"><span
style="line-height:normal;text-indent:0px;border-collapse:separate;letter-spacing:normal;text-align:-webkit-auto;font-variant:normal;text-transform:none;font-style:normal;white-space:normal;font-weight:normal;word-spacing:0px"><span
style="line-height:normal;text-indent:0px;border-collapse:separate;letter-spacing:normal;text-align:-webkit-auto;font-variant:normal;text-transform:none;font-style:normal;white-space:normal;font-weight:normal;word-spacing:0px">
                                                        <div
                                                          style="word-wrap:break-word">
                                                          <span
style="line-height:normal;text-indent:0px;border-collapse:separate;letter-spacing:normal;text-align:-webkit-auto;font-variant:normal;text-transform:none;font-style:normal;white-space:normal;font-weight:normal;word-spacing:0px">
                                                          <div
                                                          style="word-wrap:break-word">
                                                          <div>
                                                          <div>
                                                          <div>
                                                          <div>Stephen
                                                          Grossberg</div>
                                                          <div>Wang
                                                          Professor of
                                                          Cognitive and
                                                          Neural Systems</div>
                                                          <div>Professor
                                                          of
                                                          Mathematics,
                                                          Psychology,
                                                          and Biomedical
                                                          Engineering</div>
                                                          <div>
                                                          <div>Director,
                                                          Center for
                                                          Adaptive
                                                          Systems <a
                                                          moz-do-not-send="true"
href="http://www.cns.bu.edu/about/cas.html" target="_blank">http://www.cns.bu.edu/about/cas.html</a></div>
                                                          </div>
                                                          <div><a
                                                          moz-do-not-send="true"
href="http://cns.bu.edu/%7Esteve" target="_blank">http://cns.bu.edu/~steve</a></div>
                                                          <div><a
                                                          moz-do-not-send="true"
href="mailto:steve@bu.edu" target="_blank">steve@bu.edu</a></div>
                                                          </div>
                                                          </div>
                                                          </div>
                                                          <div><br>
                                                          </div>
                                                          </div>
                                                          </span></div>
                                                      </span><br>
                                                    </span><br>
                                                  </font></div>
                                                <br>
                                              </div>
                                            </div>
                                          </div>
                                        </blockquote>
                                      </div>
                                      <br>
                                    </div>
                                  </blockquote>
                                  <br>
                                </div>
                              </div>
                              <pre cols="72"><span><font color="#888888">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: <a moz-do-not-send="true" href="tel:517-353-4388" value="+15173534388" target="_blank">517-353-4388</a></font></span><div>
Fax: <a moz-do-not-send="true" href="tel:517-432-1061" value="+15174321061" target="_blank">517-432-1061</a>
Email: <a moz-do-not-send="true" href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" href="http://www.cse.msu.edu/%7Eweng/" target="_blank">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</div></pre>
                            </div>
                          </blockquote>
                        </div>
                        <br>
                      </div>
                    </blockquote>
                    <br>
                    <pre cols="72">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: <a moz-do-not-send="true" href="tel:517-353-4388" value="+15173534388" target="_blank">517-353-4388</a>
Fax: <a moz-do-not-send="true" href="tel:517-432-1061" value="+15174321061" target="_blank">517-432-1061</a>
Email: <a moz-do-not-send="true" href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" href="http://www.cse.msu.edu/%7Eweng/" target="_blank">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</pre>
                  </div>
                </div>
              </div>
            </blockquote>
          </div>
          <br>
        </div>
      </blockquote>
      <br>
      <br>
      <pre class="moz-signature" cols="72">-- 
Prof. Dr. Danko Nikolić

Web:
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://www.danko-nikolic.com">http://www.danko-nikolic.com</a>

Mail address 1:
Department of Neurophysiology
Max Planck Institut for Brain Research
Deutschordenstr. 46
60528 Frankfurt am Main
GERMANY

Mail address 2:
Frankfurt Institute for Advanced Studies
Wolfgang Goethe University
Ruth-Moufang-Str. 1
60433 Frankfurt am Main
GERMANY

----------------------------
Office: (..49-69) 96769-736
Lab: (..49-69) 96769-209
Fax: (..49-69) 96769-327
<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:danko.nikolic@gmail.com">danko.nikolic@gmail.com</a>
----------------------------</pre>
    </blockquote>
    <br>
    <pre class="moz-signature" cols="72">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: 517-353-4388
Fax: 517-432-1061
Email: <a class="moz-txt-link-abbreviated" href="mailto:weng@cse.msu.edu">weng@cse.msu.edu</a>
URL: <a class="moz-txt-link-freetext" href="http://www.cse.msu.edu/~weng/">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</pre>
  </body>
</html>