<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    > Thus, long-term memories are not stored primarily in the
    weights of neuron connections (as widely presumed) but in the rules
    by which the system changes its network in response to sensory
    inputs.<br>
    <br>
    I still wish that you can explain it in terms of neurons and their
    connections, as I believe that any model of a brain should at least
    <br>
    be explained in the 
    <meta http-equiv="content-type" content="text/html;
      charset=ISO-8859-1">
    grainularity of neurons, their connections and neural transmitters. 
    <br>
    <br>
    -John<br>
    <br>
    <div class="moz-cite-prefix">On 4/14/14 2:10 PM, Danko Nikolic
      wrote:<br>
    </div>
    <blockquote cite="mid:534C247B.6070809@gmail.com" type="cite">
      <meta content="text/html; charset=ISO-8859-1"
        http-equiv="Content-Type">
      <div class="moz-cite-prefix">Dear Andras,<br>
        <br>
          I see why it may seem on the first look that practopoiesis is
        somehow related to reinforcement learning. However, any closer
        look to the theory will reveal that this is not the case.
        Practopoiesis is related to just a little bit to reinforcement
        learning, and it is as much related to any other brain theory or
        algorithm. At the end, in fact, it is quite a novel and exciting
        way of looking at brain function.<br>
        <br>
         Maybe the contribution of practopoiesis can be appreciated best
        if described in the language of learning. Imagine a system that
        does not have one or two general learning rules that are applied
        to all of the units of the system. Instead, imagine that the
        number of different learning rules equals the number of units in
        the system; a billion neurons means billion different learning
        rules, whereby each learning rule maximizes a different
        function. <br>
        <br>
        Moreover, imagine that, in this system, all its long-term
        memories (explicit and implicit) are stored in those learning
        rules. Thus, long-term memories are not stored primarily in the
        weights of neuron connections (as widely presumed) but in the
        rules by which the system changes its network in response to
        sensory inputs. Then, when we retrieve a piece of information,
        or recognize a stimulus, or make a decision, we use these
        learning mechanisms by quickly applying them to the network
        (e.g., every second or even faster) as a function of the
        incoming sensory inputs (or the sensory-motor contingencies). As
        a result, the network  continuously changes its architecture
        with very high rate, and can quickly come back to its previous
        architecture if it is presented with a sequences of stimuli that
        has been presented already previously. One of the key point is
        that this process of changing the network is how we think,
        perceive, recall, categorize, etc.<br>
        <br>
        This process requires one more set of learning mechanisms that
        lay behind those mentioned rules containing our long-term
        memory. This latter set is responsible for acquiring our
        long-term memories i.e., for determining for each unit which
        learning rules it needs to use. Thus, there is a process of
        learning how to learn.<br>
        <br>
        Practopoietic theory explain how this is possible, why it works,
        how such systems can be described in generalized cybernetics
        terms, and why this approach is sufficiently adaptive to produce
        intelligence on par with that of humans. In practopoietic
        theory, the learning rules that store our long-term memories are
        referred to, not as "learning", but as "reconstruction of
        knowledge" or in Greek "anapoiesis". The paper also reviews
        behavioral evidence indicating that our cognition in fact is
        anapoietic by its nature.<br>
        <br>
        I hope that this helps understand that practopoiesis is
        something totally new and cannot simply be described with the
        existing machine-leaning approaches and brain theories.<br>
        <br>
        With best regards,<br>
        <br>
        Danko<br>
        <br>
        <br>
        On 4/14/14 3:05 PM, Andras Lorincz wrote:<br>
      </div>
      <blockquote
cite="mid:c90c18121a2a437a9a5201342cba0c5a@DB4PR06MB173.eurprd06.prod.outlook.com"
        type="cite">
        <meta http-equiv="Content-Type" content="text/html;
          charset=ISO-8859-1">
        <style type="text/css" style="display:none"><!--P{margin-top:0;margin-bottom:0;} .ms-cui-menu {background-color:#ffffff;border:1px rgb(171, 171, 171) solid;font-family:'Segoe UI WPC', 'Segoe UI', Tahoma, 'Microsoft Sans Serif', Verdana, sans-serif;font-size:11pt;color:rgb(51, 51, 51);} .ms-cui-menusection-title {display:none;} .ms-cui-ctl {vertical-align:text-top;text-decoration:none;color:rgb(51, 51, 51);} .ms-cui-ctl-on {background-color:rgb(223, 237, 250);opacity: 0.8;} .ms-cui-img-cont-float {display:inline-block;margin-top:2px} .ms-cui-smenu-inner {padding-top:0px;} .ms-owa-paste-option-icon {margin: 2px 4px 0px 4px;vertical-align:sub;padding-bottom: 2px;display:inline-block;} .ms-rtePasteFlyout-option:hover {background-color:rgb(223, 237, 250) !important;opacity:1 !important;} .ms-rtePasteFlyout-option {padding:8px 4px 8px 4px;outline:none;} .ms-cui-menusection {float:left; width:85px;height:24px;overflow:hidden}.wf {speak:none; font-weight:normal; font-variant:
 n!
 ormal; tex
t-transform:none; -webkit-font-smoothing:antialiased; vertical-align:middle; display:inline-block;}.wf-family-owa {font-family:'o365Icons'}@font-face {  font-family:'o365IconsIE8';  src:url('https://r4.res.outlook.com/owa/prem/15.0.918.10/resources/styles/office365icons.ie8.eot?#iefix') format('embedded-opentype'),         url('https://r4.res.outlook.com/owa/prem/15.0.918.10/resources/styles/office365icons.ie8.woff') format('woff'),         url('https://r4.res.outlook.com/owa/prem/15.0.918.10/resources/styles/office365icons.ie8.ttf') format('truetype');  font-weight:normal;  font-style:normal;}@font-face {  font-family:'o365IconsMouse';  src:url('https://r4.res.outlook.com/owa/prem/15.0.918.10/resources/styles/office365icons.mouse.eot?#iefix') format('embedded-opentype'),         url('https://r4.res.outlook.com/owa/prem/15.0.918.10/resources/styles/office365icons.mouse.woff') format('woff'),         url('https://r4.res.outlook.com/owa/prem/15.0.918.10/resources/styles/office!
 365icons.m
ouse.ttf') format('truetype');  font-weight:normal;  font-style:normal;}.wf-family-owa {font-family:'o365IconsMouse'}.ie8 .wf-family-owa {font-family:'o365IconsIE8'}.ie8 .wf-owa-play-large:before {content:'\e254';}.notIE8 .wf-owa-play-large:before {content:'\e054';}.ie8 .wf-owa-play-large {color:#FFFFFF/*$WFWhiteColor*/;}.notIE8 .wf-owa-play-large {border-color:#FFFFFF/*$WFWhiteColor*/; width:1.4em; height:1.4em; border-width:.1em; border-style:solid; border-radius:.8em; text-align:center; box-sizing:border-box; -moz-box-sizing:border-box; padding:0.1em; color:#FFFFFF/*$WFWhiteColor*/;}.ie8 .wf-size-play-large {width:40px; height:40px; font-size:30px}.notIE8 .wf-size-play-large {width:40px; height:40px; font-size:30px}--></style>
        <div id="OWAFontStyleDivID"
style="font-size:12pt;color:#000000;background-color:#FFFFFF;font-family:Calibri,Arial,Helvetica,sans-serif;">
          <p>You are heading reinforcement learning and the
            so-called temporal difference learning in it. This is a good
            direction, since many little details can be mapped to the
            corico-basal ganglia-thalamocortical loops. Nonetheless,
            this can't explain everything. The separation of outliers
            from the generalizable subspace(s) is relevant, since the
            latter enables one to fill in missing information, whereas
            the former does not. This was the take-home message of the
            Netflix competition and the subsequent developments on exact
            matrix completion.<br>
          </p>
          <p>Andras<br>
          </p>
          <div>
            <p><br>
            </p>
            <div name="divtagdefaultwrapper"
              style="font-family:Calibri,Arial,Helvetica,sans-serif;
              font-size:; margin:0">
              <div>
                <div>
                  <div>
                    <div><font>
                        <p class="MsoNormal" style="font-size:13px;
                          font-family:Calibri,Arial,Helvetica,sans-serif;
                          margin:0cm 0cm 0pt"> _________________________<br>
                          <font size="2">Andras Lorincz<br>
                            ECCAI Fellow</font></p>
                        <p class="MsoNormal" style="font-size:13px;
                          font-family:Calibri,Arial,Helvetica,sans-serif;
                          margin:0cm 0cm 0pt"> <font size="2">email: <a
                              moz-do-not-send="true"
                              class="moz-txt-link-abbreviated"
                              href="mailto:lorincz@inf.elte.hu">lorincz@inf.elte.hu</a> <br>
                            home: </font><a moz-do-not-send="true"
                            href="http://people.inf.elte.hu/lorincz"><font
                              size="2">http://people.inf.elte.hu/lorincz</font></a><font
                            size="2">  </font></p>
                      </font></div>
                  </div>
                </div>
              </div>
            </div>
          </div>
          <div style="color: rgb(40, 40, 40);">
            <hr tabindex="-1" style="display:inline-block; width:98%">
            <div id="divRplyFwdMsg" dir="ltr"><font
                style="font-size:11pt" color="#000000" face="Calibri,
                sans-serif"><b>From:</b> Connectionists <a
                  moz-do-not-send="true" class="moz-txt-link-rfc2396E"
                  href="mailto:connectionists-bounces@mailman.srv.cs.cmu.edu"><connectionists-bounces@mailman.srv.cs.cmu.edu></a>
                on behalf of Danko Nikolic <a moz-do-not-send="true"
                  class="moz-txt-link-rfc2396E"
                  href="mailto:danko.nikolic@googlemail.com"><danko.nikolic@googlemail.com></a><br>
                <b>Sent:</b> Monday, April 14, 2014 12:51 PM<br>
                <b>To:</b> <a moz-do-not-send="true"
                  class="moz-txt-link-abbreviated"
                  href="mailto:connectionists@mailman.srv.cs.cmu.edu">connectionists@mailman.srv.cs.cmu.edu</a><br>
                <b>Subject:</b> Re: Connectionists: how the brain works?
                (UNCLASSIFIED)</font>
              <div> </div>
            </div>
            <div>
              <div class="moz-cite-prefix">Dear all,<br>
                <br>
                  It has been very interesting to follow the discussion
                on the functioning of ART, stability-plasticity dilemma
                and the related issues. In that context, I would like to
                point to an exciting property of the practopoietic
                theory, which enables us to understand what is needed
                for a general solution to the problems similar to the
                stability-plasticity dilemma. <br>
                <br>
                The issue of stability-plasticity dilemma can be
                described as a problem of deciding when a new category
                of a stimulus needs to be created and the system has to
                be adjusted as opposed to deciding to treat the stimulus
                as old and familiar and thus, not needing to adjust.
                Practopoietic theory helps us understand how  a general
                solution can be implemented for deciding whether to use
                old types of behavior or to come up with new ones. This
                is possible in a so-called "T_3 system" in which a
                process called "anapoiesis" takes place. When a system
                is organized in such a T_3 way, every stimulus, old or
                new, is treated in the same fashion, i.e., as new. The
                system always adjusts--to everything(!)--even to stimuli
                that have been seen thousands of times. There is never a
                simple direct categorization (or pattern recognition) in
                which a mathematical mapping would take place from input
                vectors to output vectors, as traditionally implemented
                in multi-layer neural networks. <br>
                <br>
                Rather the system readjusts itself continuously to
                prepare for interactions with the surrounding world. The
                only simple input-output mappings that take place are
                the sensory-motor loops that execute the actual
                behavior. The internal processes corresponding to
                perception, recognition, categorization etc. are
                implemented by the mechanisms of internal system
                adjustments (based on anapoiesis). These mechanisms
                create new sensory-motor loops, which are then most
                similar to the traditional mapping operations. The
                difference between old and new stimuli (i.e., familiar
                and unfamiliar) is detectable in the behavior of the
                system only because the system adjusts quicker to the
                older that to the newer stimuli. <br>
                <br>
                The claimed advantage of such a T_3 practopoietic system
                is that only such a system can become generally
                intelligent as a whole and behave adaptively and
                consciously with understanding of what is going on
                around; The system forms a general "adjustment machine"
                that can become aware of its surroundings and can be
                capable of interpreting the situation appropriately to
                decide on the next action. Thus, the perceptual dilemma
                of stability vs. plasticity is converted into a general
                understanding of the current situation and the needs of
                the system. If the current goals of the system requires
                treating a slightly novel stimulus as new, it will be
                treated as "new". However, if a slight change in the
                stimulus features does not make a difference for the
                current goals and the situation, than the stimulus will
                be treated as "old".<br>
                <br>
                Importantly, practopoietic theory is not formulated in
                terms of neurons (inhibition, excitation, connections,
                changes of synaptic weights, etc.). Instead, the theory
                is formulated much more elegantly--in terms of
                interactions between cybernetic control mechanisms
                organized into a specific type of hierarchy (poietic
                hierarchy). This abstract formulation is extremely
                helpful for two reasons. First, it enables one to focus
                on the most important functional aspects and thus, to
                understand much easier the underlying principles of
                system operations. Second, it tells us what is needed to
                create intelligent behavior using any type of
                implementation, neuronal or non-neuronal.<br>
                <br>
                I hope this will be motivating enough to give
                practopoiesis a read.<br>
                <br>
                With best regards,<br>
                <br>
                Danko<br>
                <br>
                <br>
                <br>
                Link:<br>
                <a moz-do-not-send="true" class="moz-txt-link-freetext"
                  href="http://www.danko-nikolic.com/practopoiesis/">http://www.danko-nikolic.com/practopoiesis/</a><br>
                <br>
                <br>
                <br>
                On 4/11/14 2:42 AM, Tsvi Achler wrote:<br>
              </div>
              <blockquote type="cite">
                <div dir="ltr">I can't comment on most of this, but I am
                  not sure if all models of sparsity and sparse coding
                  fall into the connectionist realm either because some
                  make statistical assumptions.
                  <div>-Tsvi</div>
                </div>
                <div class="gmail_extra"><br>
                  <br>
                  <div class="gmail_quote">On Tue, Apr 8, 2014 at 9:19
                    PM, Juyang Weng <span dir="ltr"> <<a
                        moz-do-not-send="true"
                        href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>></span>
                    wrote:<br>
                    <blockquote class="gmail_quote" style="margin:0 0 0
                      .8ex; border-left:1px #ccc solid;
                      padding-left:1ex">
                      <div bgcolor="#FFFFFF">Tavi:<br>
                        <br>
                        Let me explain a little more detail:<br>
                        <br>
                        There are two large categories of biological
                        neurons, excitatory and inhibitory.   Both are
                        developed through mainly signal statistics, <br>
                        not specified primarily by the genomes.   Not
                        all people agree with my this point, but please
                        tolerate my this view for now.   <br>
                        I gave a more detailed discussion on this view
                        in my NAI book. <br>
                        <br>
                        The main effect of inhibitory connections is to
                        reduce the number of firing neurons (David Field
                        called it sparse coding), with the help of <br>
                        excitatory connections.  This sparse coding is
                        important because those do not fire are long
                        term memory of the area at this point of time.<br>
                        My this view is different from David Field.  He
                        wrote that sparse coding is for the current
                        representations.  I think sparse coding is <br>
                        necessary for long-term memory. Not all people
                        agree with my this point, but please tolerate my
                        this view for now.   <br>
                        <br>
                        However, this reduction requires very fast
                        parallel neuronal updates to avoid
                        uncontrollable large-magnitude oscillations.  <br>
                        Even with the fast biological parallel neuronal
                        updates, we still see slow but small-magnitude
                        oscillations such as the <br>
                        well-known theta waves and alpha waves.   My
                        view is that such slow but small-magnitude
                        oscillations are side effects of <br>
                        excitatory and inhibitory connections that form
                        many loops, not something really desirable for
                        the brain operation (sorry, <br>
                        Paul Werbos).  Not all people agree with my this
                        point, but please tolerate my this view for now.
                        <br>
                        <br>
                        Therefore, as far as I understand, all computer
                        simulations for spiking neurons are not showing
                        major brain functions<br>
                        because they have to deal with the slow
                        oscillations that are very different from the
                        brain's, e.g., as Dr. Henry Markram reported<br>
                        (40Hz?). <br>
                        <br>
                        The above discussion again shows the power and
                        necessity of an overarching brain theory like
                        that in my NAI book.  <br>
                        Those who only simulate biological neurons using
                        superficial biological phenomena are not going
                        to demonstrate <br>
                        any major brain functions.  They can talk about
                        signal statistics from their simulations, but
                        signal statistics are far from brain functions.
                        <br>
                        <br>
                        -John
                        <div>
                          <div class="h5"><br>
                            <br>
                            <div>On 4/8/14 1:30 AM, Tsvi Achler wrote:<br>
                            </div>
                            <blockquote type="cite">
                              <div dir="ltr">Hi John,
                                <div>ART evaluates distance between the
                                  contending representation and the
                                  current input through vigilance.  If
                                  they are too far apart, a poor
                                  vigilance signal will be triggered.</div>
                                <div>The best resonance will be achieved
                                  when they have the least amount of
                                  distance.</div>
                                <div>If in your model, K-nearest
                                  neighbors is used without a neural
                                  equivalent, then your model is not
                                  quite in the spirit of a connectionist
                                  model.</div>
                                <div>For example, Bayesian networks do a
                                  great job emulating brain behavior,
                                  modeling the integration of priors.
                                  and has been invaluable to model
                                  cognitive studies.  However they
                                  assume a statistical configuration of
                                  connections and distributions which is
                                  not quite known how to emulate with
                                  neurons.  Thus pure Bayesian models
                                  are also questionable in terms of
                                  connectionist modeling.  But some
                                  connectionist models can emulate some
                                  statistical models for example see
                                  section 2.4  in Thomas &
                                  McClelland's chapter in Sun's 2008
                                  book (<a moz-do-not-send="true"
href="http://www.psyc.bbk.ac.uk/people/academic/thomas_m/TM_Cambridge_sub.pdf"
                                    target="_blank">http://www.psyc.bbk.ac.uk/people/academic/thomas_m/TM_Cambridge_sub.pdf</a>).</div>
                                <div>I am not suggesting <span
                                    style="font-size:13.333333969116211px;
                                    font-family:arial,sans-serif">Hodgkin-Huxley</span> level

                                  detailed neuron models, however
                                  connectionist models should have their
                                  connections explicitly defined. </div>
                                <div>Sincerely,</div>
                                <div>-Tsvi</div>
                                <div><br>
                                </div>
                              </div>
                              <div class="gmail_extra"><br>
                                <br>
                                <div class="gmail_quote">On Mon, Apr 7,
                                  2014 at 10:58 AM, Juyang Weng <span
                                    dir="ltr"> <<a
                                      moz-do-not-send="true"
                                      href="mailto:weng@cse.msu.edu"
                                      target="_blank">weng@cse.msu.edu</a>></span>
                                  wrote:<br>
                                  <blockquote class="gmail_quote"
                                    style="margin:0 0 0 .8ex;
                                    border-left:1px #ccc solid;
                                    padding-left:1ex">
                                    <div bgcolor="#FFFFFF">Tsvi,<br>
                                      <br>
                                      Note that ART uses a vigilance
                                      value to pick up the first
                                      "acceptable" match in its
                                      sequential bottom-up and top-down
                                      search.<br>
                                      I believe that was Steve meant
                                      when he mentioned vigilance.    <br>
                                      <br>
                                      Why do you think "ART as a neural
                                      way to implement a K-nearest
                                      neighbor algorithm"?  <br>
                                      If not all the neighbors have
                                      sequentially participated,<br>
                                      how can ART find the nearest
                                      neighbor, let alone K-nearest
                                      neighbor?<br>
                                      <br>
                                      Our DN uses an explicit k-nearest
                                      mechanism to find the k-nearest
                                      neighbors in every network update,
                                      <br>
                                      to avoid the problems of slow
                                      resonance in existing models of
                                      spiking neuronal networks.   <br>
                                      The explicit k-nearest mechanism
                                      itself is not meant to be
                                      biologically plausible, <br>
                                      but it gives a computational
                                      advantage for software simulation
                                      of large networks <br>
                                      at a speed slower than 1000
                                      network updates per second.<br>
                                      <br>
                                      I guess that more detailed
                                      molecular simulations of
                                      individual neuronal spikes (such
                                      as using the Hodgkin-Huxley model
                                      of<br>
                                      a neuron, using the <a
                                        moz-do-not-send="true"
                                        href="http://www.neuron.yale.edu/neuron/"
                                        target="_blank"> NEURON
                                        software,</a> or like <a
                                        moz-do-not-send="true"
                                        href="http://bluebrain.epfl.ch/"
                                        target="_blank"> the Blue Brain
                                        project</a> directed by
                                      respected Dr. Henry Markram) <br>
                                      are very useful for showing some
                                      detailed molecular, synaptic, and
                                      neuronal properties.<br>
                                      However, they miss necessary
                                      brain-system-level mechanisms so
                                      much that it is difficult for them
                                      <br>
                                      to show major brain-scale
                                      functions <br>
                                      (such as learning to recognize
                                      objects and detection of natural
                                      objects directly from natural
                                      cluttered scenes). <br>
                                      <br>
                                      According to my understanding, if
                                      one uses a detailed neuronal model
                                      for each of a variety of neuronal
                                      types and<br>
                                      connects those simulated neurons
                                      of different types according to a
                                      diagram of Brodmann areas, <br>
                                      his simulation is NOT going to
                                      lead to any major brain function. 
                                      <br>
                                      He still needs brain-system-level
                                      knowledge such as that taught in
                                      the BMI 871 course. <br>
                                      <br>
                                      -John <br>
                                      <div>
                                        <div><br>
                                          <div>On 4/7/14 8:07 AM, Tsvi
                                            Achler wrote:<br>
                                          </div>
                                          <blockquote type="cite">
                                            <div dir="ltr">
                                              <div>Dear Steve, John</div>
                                              I think such discussions
                                              are great to spark
                                              interests in feedback
                                              (output back to input)
                                              such models which I feel
                                              should be given much more
                                              attention.
                                              <div>In this vein it may
                                                be better to discuss
                                                more of the details here
                                                than to suggest to read
                                                a reference.</div>
                                              <div><br>
                                              </div>
                                              <div>Basically I see ART
                                                as a neural way to
                                                implement a K-nearest
                                                neighbor algorithm.
                                                 Clearly the way ART
                                                overcomes the neural
                                                hurdles is immense
                                                especially in figuring
                                                out how to coordinate
                                                neurons.  However it is
                                                also important to
                                                summarize such methods
                                                in algorithmic terms
                                                 which I attempt to do
                                                here (and please
                                                comment/correct).</div>
                                              <div>Instar learning is
                                                used to find the best
                                                weights for quick
                                                feedforward recognition
                                                without too much
                                                resonance (otherwise
                                                more resonance will be
                                                needed).  Outstar
                                                learning is used to find
                                                the expectation of the
                                                patterns.  The resonance
                                                mechanism evaluates
                                                distances between the
                                                "neighbors" evaluating
                                                how close differing
                                                outputs are to the input
                                                pattern (using the
                                                expectation).  By
                                                choosing one winner the
                                                network is equivalent to
                                                a 1-nearest neighbor
                                                model.  If you open it
                                                up to more winners (eg k
                                                winners) as you suggest
                                                 then it becomes a
                                                k-nearest neighbor
                                                mechanism.</div>
                                              <div><br>
                                              </div>
                                              <div>Clearly I focused
                                                here on the main ART
                                                modules and did not
                                                discuss other additions.
                                                 But I want to just
                                                focus on the main idea
                                                at this point.</div>
                                              <div>Sincerely,</div>
                                              <div>-Tsvi</div>
                                            </div>
                                            <div class="gmail_extra"><br>
                                              <br>
                                              <div class="gmail_quote">On

                                                Sun, Apr 6, 2014 at 1:30
                                                PM, Stephen Grossberg <span
                                                  dir="ltr"> <<a
                                                    moz-do-not-send="true"
href="mailto:steve@cns.bu.edu" target="_blank">steve@cns.bu.edu</a>></span>
                                                wrote:<br>
                                                <blockquote
                                                  class="gmail_quote"
                                                  style="margin:0 0 0
                                                  .8ex; border-left:1px
                                                  #ccc solid;
                                                  padding-left:1ex">
                                                  <div
                                                    style="word-wrap:break-word"><font
                                                      face="Arial"
                                                      size="5">Dear
                                                      John,</font>
                                                    <div><font
                                                        face="Arial"
                                                        size="5"><br>
                                                      </font></div>
                                                    <div><font
                                                        face="Arial"
                                                        size="5">Thanks
                                                        for your
                                                        questions. I
                                                        reply below.</font></div>
                                                    <div><font
                                                        face="Arial"
                                                        size="5"><br>
                                                      </font>
                                                      <div>
                                                        <div>
                                                          <div><font
                                                          face="Arial"
                                                          size="5">On
                                                          Apr 5, 2014,
                                                          at 10:51 AM,
                                                          Juyang Weng
                                                          wrote:</font></div>
                                                          <font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font>
                                                          <blockquote
                                                          type="cite">
                                                          <div
                                                          bgcolor="#FFFFFF"><font
                                                          face="Arial"
                                                          size="5">Dear
                                                          Steve,<br>
                                                          <br>
                                                          This is one of
                                                          my long-time
                                                          questions that
                                                          I did not have
                                                          a chance to
                                                          ask you when I
                                                          met you many
                                                          times before.
                                                          <br>
                                                          But they may
                                                          be useful for
                                                          some people on
                                                          this list.   <br>
                                                          Please accept
                                                          my apology of
                                                          my question
                                                          implies any
                                                          false
                                                          impression
                                                          that I did not
                                                          intend.<br>
                                                          <br>
                                                          (1) Your
                                                          statement
                                                          below seems to
                                                          have confirmed
                                                          my
                                                          understanding: 
                                                          <br>
                                                          Your top-down
                                                          process in ART
                                                          in the late
                                                          1990's is
                                                          basically for
                                                          finding an
                                                          acceptable
                                                          match <br>
                                                          between the
                                                          input feature
                                                          vector and the
                                                          stored feature
                                                          vectors
                                                          represented by
                                                          neurons (not
                                                          meant for the
                                                          nearest
                                                          match). <br>
                                                          </font></div>
                                                          </blockquote>
                                                          <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                        </div>
                                                        <font
                                                          face="Arial"
                                                          size="5">ART
                                                          has developed
                                                          a lot since
                                                          the 1990s. A
                                                          non-technical
                                                          but fairly
                                                          comprehensive
                                                          review article
                                                          was published
                                                          in 2012 in <i>Neural

                                                          Networks</i>
                                                          and can be
                                                          found at <a
                                                          moz-do-not-send="true"
href="http://cns.bu.edu/%7Esteve/ART.pdf" target="_blank">http://cns.bu.edu/~steve/ART.pdf</a>.</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">I do
                                                          not think
                                                          about the
                                                          top-down
                                                          process in ART
                                                          in quite the
                                                          way that you
                                                          state above.
                                                          My reason for
                                                          this is
                                                          summarized by
                                                          the acronym
                                                          CLEARS for the
                                                          processes of
                                                          Consciousness,
                                                          Learning,
                                                          Expectation,
                                                          Attention,
                                                          Resonance, and
                                                          Synchrony. </font><span
style="font-family:Arial;
font-size:x-large">All the CLEARS processes come into this story, and </span><span
style="font-family:Arial;
font-size:x-large">ART top-down mechanisms contribute to all of them.
                                                          For me, the
                                                          most
                                                          fundamental
                                                          issues concern
                                                          how ART
                                                          dynamically
                                                          self-stabilizes
                                                          the memories
                                                          that are
                                                          learned within
                                                          the model's
                                                          bottom-up
                                                          adaptive
                                                          filters and
                                                          top-down
                                                          expectations. </span></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">In
                                                          particular,
                                                          during
                                                          learning, a
                                                          big enough
                                                          mismatch can
                                                          lead to
                                                          hypothesis
                                                          testing and
                                                          search for a
                                                          new, or
                                                          previously
                                                          learned,
                                                          category that
                                                          leads to an
                                                          acceptable
                                                          match. The
                                                          criterion for
                                                          what is "big
                                                          enough
                                                          mismatch" or
                                                          "acceptable
                                                          match" is
                                                          regulated by a
                                                          vigilance
                                                          parameter that
                                                          can itself
                                                          vary in a
                                                          state-dependent
                                                          way.</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">After
                                                          learning
                                                          occurs, a
                                                          bottom-up
                                                          input pattern
                                                          typically
                                                          directly
                                                          selects the
                                                          best-matching
                                                          category,
                                                          without any
                                                          hypothesis
                                                          testing or
                                                          search. And
                                                          even if there
                                                          is a reset due
                                                          to a large
                                                          initial
                                                          mismatch with
                                                          a previously
                                                          active
                                                          category, a
                                                          single reset
                                                          event may lead
                                                          directly to a
                                                          matching
                                                          category that
                                                          can directly
                                                          resonate with
                                                          the data. </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">I
                                                          should note
                                                          that all of
                                                          the
                                                          foundational
                                                          predictions of
                                                          ART now have
                                                          substantial
                                                          bodies of
                                                          psychological
                                                          and
                                                          neurobiological
                                                          data to
                                                          support them.
                                                          See the review
                                                          article if you
                                                          would like to
                                                          read about
                                                          them.</font></div>
                                                      <div>
                                                        <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font>
                                                          <blockquote
                                                          type="cite">
                                                          <div
                                                          bgcolor="#FFFFFF"><font
                                                          face="Arial"
                                                          size="5">The
                                                          currently
                                                          active neuron
                                                          is the one
                                                          being examined
                                                          by the top
                                                          down process<br>
                                                          </font></div>
                                                          </blockquote>
                                                          <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                        </div>
                                                        <font
                                                          face="Arial"
                                                          size="5">I'm
                                                          not sure what
                                                          you mean by
                                                          "being
                                                          examined", but
                                                          perhaps my
                                                          comment above
                                                          may deal with
                                                          it.</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">I
                                                          should
                                                          comment,
                                                          though, about
                                                          your use of
                                                          the word
                                                          "currently
                                                          active
                                                          neuron". I
                                                          assume that
                                                          you mean at
                                                          the category
                                                          level. </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">In
                                                          this
                                                          regard, there
                                                          are two ART's.
                                                          The first
                                                          aspect of ART
                                                          is as a
                                                          cognitive and
                                                          neural theory
                                                          whose scope,
                                                          which includes
                                                          perceptual,
                                                          cognitive, and
                                                          adaptively
                                                          timed
                                                          cognitive-emotional
                                                          dynamics,
                                                          among other
                                                          processes, is
                                                          illustrated by
                                                          the above
                                                          referenced
                                                          2012 review
                                                          article in <i>Neural

                                                          Networks</i>.
                                                          In the
                                                          biological
                                                          theory, there
                                                          is no general
                                                          commitment to
                                                          just one
                                                          "currently
                                                          active
                                                          neuron". One
                                                          always
                                                          considers the
                                                          neuronal
                                                          population, or
                                                          populations,
                                                          that represent
                                                          a learned
                                                          category.
                                                          Sometimes, but
                                                          not always, a
                                                          winner-take-all

                                                          category is
                                                          chosen. </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">The
                                                          2012 review
                                                          article
                                                          illustrates
                                                          some of the
                                                          large data
                                                          bases of
                                                          psychological
                                                          and
                                                          neurobiological
                                                          data that have
                                                          been explained
                                                          in a
                                                          principled
                                                          way,
                                                          quantitatively
                                                          simulated, and
                                                          successfully
                                                          predicted by
                                                          ART over a
                                                          period of
                                                          decades.
                                                          ART-like
                                                          processing is,
                                                          however,
                                                          certainly not
                                                          the only kind
                                                          of computation
                                                          that may be
                                                          needed to
                                                          understand how
                                                          the brain
                                                          works. The
                                                          paradigm
                                                          called
                                                          Complementary
                                                          Computing that
                                                          I introduced
                                                          awhile ago
                                                          makes precise
                                                          the sense in
                                                          which ART may
                                                          be just one
                                                          kind of
                                                          dynamics
                                                          supported by
                                                          advanced
                                                          brains. This
                                                          is also
                                                          summarized in
                                                          the review
                                                          article.<br>
                                                        </font>
                                                        <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                        <div><font
                                                          face="Arial"
                                                          size="5">The
                                                          second aspect
                                                          of ART is as a
                                                          series of
                                                          algorithms
                                                          that
                                                          mathematically
                                                          characterize
                                                          key ART design
                                                          principles and
                                                          mechanisms in
                                                          a focused
                                                          setting, and
                                                          provide
                                                          algorithms for
                                                          large-scale
                                                          applications
                                                          in engineering
                                                          and
                                                          technology.
                                                          ARTMAP, fuzzy
                                                          ARTMAP, and
                                                          distributed
                                                          ARTMAP are
                                                          among these,
                                                          all of them
                                                          developed with
                                                          Gail
                                                          Carpenter.
                                                          Some of these
                                                          algorithms use
                                                          winner-take-all

                                                          categories to
                                                          enable the
                                                          proof of
                                                          mathematical
                                                          theorems that
                                                          characterize
                                                          how underlying
                                                          design
                                                          principles
                                                          work. In
                                                          contrast, the
                                                          distributed
                                                          ARTMAP family
                                                          of algorithms,
                                                          developed by
                                                          Gail Carpenter
                                                          and her
                                                          colleagues,
                                                          allows for
                                                          distributed
                                                          category
                                                          representations
                                                          without losing
                                                          the benefits
                                                          of fast,
                                                          incremental,
                                                          self-stabilizing
                                                          learning and
                                                          prediction in
                                                          response to a
                                                          large
                                                          non-stationary
                                                          databases that
                                                          can include
                                                          many
                                                          unexpected
                                                          events. </font></div>
                                                        <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                        <div><font
                                                          face="Arial"
                                                          size="5">See,
                                                          e.g., <a
                                                          moz-do-not-send="true"
href="http://techlab.bu.edu/members/gail/articles/115_dART_NN_1997_.pdf"
target="_blank">http://techlab.bu.edu/members/gail/articles/115_dART_NN_1997_.pdf</a>
                                                          and <a
                                                          moz-do-not-send="true"
href="http://techlab.bu.edu/members/gail/articles/155_Fusion2008_CarpenterRavindran.pdf"
target="_blank">
http://techlab.bu.edu/members/gail/articles/155_Fusion2008_CarpenterRavindran.pdf</a>.</font></div>
                                                        <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                        <div><font
                                                          face="Arial"
                                                          size="5">I
                                                          should note
                                                          that FAST
                                                          learning is a
                                                          technical
                                                          concept: it
                                                          means that
                                                          each adaptive
                                                          weight can
                                                          converge to
                                                          its new
                                                          equilibrium
                                                          value on EACH
                                                          learning
                                                          trial. That is
                                                          why ART
                                                          algorithms can
                                                          often
                                                          successfully
                                                          carry out
                                                          one-trial
                                                          incremental
                                                          learning of a
                                                          data base.
                                                          This is not
                                                          true of many
                                                          other
                                                          algorithms,
                                                          such as back
                                                          propagation,
                                                          simulated
                                                          annealing, and
                                                          the like,
                                                          which all
                                                          experience
                                                          catastrophic
                                                          forgetting if
                                                          they try to do
                                                          fast learning.
                                                          Almost all
                                                          other learning
                                                          algorithms
                                                          need to be run
                                                          using slow
                                                          learning, that
                                                          allows only a
                                                          small
                                                          increment in
                                                          the values of
                                                          adaptive
                                                          weights on
                                                          each learning
                                                          trial, to
                                                          avoid massive
                                                          memory
                                                          instabilities,
                                                          and work best
                                                          in response to
                                                          stationary
                                                          data. Such
                                                          algorithms
                                                          often fail to
                                                          detect
                                                          important rare
                                                          cases, among
                                                          other
                                                          limitations.
                                                          ART can
                                                          provably learn
                                                          in either the
                                                          fast or slow
                                                          mode in
                                                          response to
                                                          non-stationary
                                                          data.</font></div>
                                                        <div>
                                                          <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                          <blockquote
                                                          type="cite">
                                                          <div
                                                          bgcolor="#FFFFFF"><font
                                                          face="Arial"
                                                          size="5">in a
                                                          sequential
                                                          fashion: one
                                                          neuron after
                                                          another, until
                                                          an acceptable
                                                          neuron is
                                                          found.<br>
                                                          <br>
                                                          (2) The input
                                                          to the ART in
                                                          the late
                                                          1990's is for
                                                          a single
                                                          feature vector
                                                          as a
                                                          monolithic
                                                          input.  <br>
                                                          By monolithic,
                                                          I mean that
                                                          all neurons
                                                          take the
                                                          entire input
                                                          feature vector
                                                          as input.   <br>
                                                          I raise this
                                                          point here
                                                          because neuron
                                                          in ART in the
                                                          late 1990's
                                                          does not have
                                                          an explicit
                                                          local sensory
                                                          receptive
                                                          field (SRF), <br>
                                                          i.e., are
                                                          fully
                                                          connected from
                                                          all components
                                                          of the input
                                                          vector.   A
                                                          local SRF
                                                          means that
                                                          each neuron is
                                                          only connected
                                                          to a small
                                                          region <br>
                                                          in an input
                                                          image. <br>
                                                          </font></div>
                                                          </blockquote>
                                                          <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          </font></div>
                                                        </div>
                                                        <font
                                                          face="Arial"
                                                          size="5">Various

                                                          ART algorithms
                                                          for technology
                                                          do use fully
                                                          connected
                                                          networks. They
                                                          represent a
                                                          single-channel
                                                          case, which is
                                                          often
                                                          sufficient in
                                                          applications
                                                          and which
                                                          simplifies
                                                          mathematical
                                                          proofs.
                                                          However, the
                                                          single-channel
                                                          case is, as
                                                          its name
                                                          suggests, not
                                                          a necessary
                                                          constraint on
                                                          ART design. </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">In
                                                          addition, many
                                                          ART biological
                                                          models do not
                                                          restrict
                                                          themselves to
                                                          the
                                                          single-channel
                                                          case, and do
                                                          have receptive
                                                          fields. These
                                                          include the
                                                          LAMINART
                                                          family of
                                                          models that
                                                          predict
                                                          functional
                                                          roles for many
                                                          identified
                                                          cell types in
                                                          the laminar
                                                          circuits of
                                                          cerebral
                                                          cortex. These
                                                          models
                                                          illustrate how
                                                          variations of
                                                          a shared
                                                          laminar
                                                          circuit design
                                                          can carry out
                                                          very different
                                                          intelligent
                                                          functions,
                                                          such as 3D
                                                          vision (e.g.,
                                                          3D LAMINART),
                                                          speech and
                                                          language
                                                          (e.g.,
                                                          cARTWORD), and
                                                          cognitive
                                                          information
                                                          processing
                                                          (e.g., LIST
                                                          PARSE). They
                                                          are all
                                                          summarized in
                                                          the 2012
                                                          review
                                                          article, with
                                                          the archival
                                                          articles
                                                          themselves on
                                                          my web page <a
moz-do-not-send="true" href="http://cns.bu.edu/%7Esteve" target="_blank">http://cns.bu.edu/~steve</a>. </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">The
                                                          existence of
                                                          these laminar
                                                          variations-on-a-theme

                                                          provides an
                                                          existence
                                                          proof for the
                                                          exciting goal
                                                          of designing a
                                                          family of
                                                          chips whose
                                                          specializations
                                                          can realize
                                                          all aspects of
                                                          higher
                                                          intelligence,
                                                          and which can
                                                          be
                                                          consistently
                                                          connected
                                                          because they
                                                          all share a
                                                          similar
                                                          underlying
                                                          design. Work
                                                          on achieving
                                                          this goal can
                                                          productively
                                                          occupy lots of
                                                          creative
                                                          modelers and
                                                          technologists
                                                          for many years
                                                          to come.</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">I
                                                          hope that the
                                                          above replies
                                                          provide some
                                                          relevant
                                                          information,
                                                          as well as
                                                          pointers for
                                                          finding more.</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">Best,</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5">Steve</font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font></div>
                                                      <div>
                                                        <blockquote
                                                          type="cite">
                                                          <div
                                                          bgcolor="#FFFFFF">
                                                          <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                          My apology
                                                          again if my
                                                          understanding
                                                          above has
                                                          errors
                                                          although I
                                                          have examined
                                                          the above two
                                                          points
                                                          carefully <br>
                                                          through
                                                          multiple your
                                                          papers.<br>
                                                          <br>
                                                          Best regards,<br>
                                                          <br>
                                                          -John<br>
                                                          <br>
                                                          </font></div>
                                                          <div>
                                                          <pre cols="72"><font face="Arial"><span style="font-size:18px">Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: <a moz-do-not-send="true" href="tel:517-353-4388" value="+15173534388" target="_blank">517-353-4388</a>
Fax: <a moz-do-not-send="true" href="tel:517-432-1061" value="+15174321061" target="_blank">517-432-1061</a>
Email: <a moz-do-not-send="true" href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" href="http://www.cse.msu.edu/%7Eweng/" target="_blank">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</span></font></pre>
                                                          </div>
                                                          </div>
                                                        </blockquote>
                                                      </div>
                                                      <div><font
                                                          face="Arial"
                                                          size="5"><br>
                                                        </font>
                                                        <div><font
                                                          face="Arial"
                                                          size="5"><span
                                                          style="line-height:normal;

                                                          text-indent:0px;

                                                          border-collapse:separate;

                                                          letter-spacing:normal;

                                                          font-variant:normal;

                                                          text-transform:none;

                                                          font-style:normal;

                                                          white-space:normal;

font-weight:normal;
word-spacing:0px"><span style="line-height:normal; text-indent:0px;
                                                          border-collapse:separate;
                                                          letter-spacing:normal;

                                                          font-variant:normal;

                                                          text-transform:none;

                                                          font-style:normal;

                                                          white-space:normal;

font-weight:normal;
word-spacing:0px">
                                                          <div
                                                          style="word-wrap:break-word"><span
                                                          style="line-height:normal;

                                                          text-indent:0px;

                                                          border-collapse:separate;

                                                          letter-spacing:normal;

                                                          font-variant:normal;

                                                          text-transform:none;

                                                          font-style:normal;

                                                          white-space:normal;

font-weight:normal;
word-spacing:0px">
                                                          <div
                                                          style="word-wrap:break-word">
                                                          <div>
                                                          <div>
                                                          <div>
                                                          <div>Stephen
                                                          Grossberg</div>
                                                          <div>Wang
                                                          Professor of
                                                          Cognitive and
                                                          Neural Systems</div>
                                                          <div>Professor
                                                          of
                                                          Mathematics,
                                                          Psychology,
                                                          and Biomedical
                                                          Engineering</div>
                                                          <div>
                                                          <div>Director,
                                                          Center for
                                                          Adaptive
                                                          Systems <a
                                                          moz-do-not-send="true"
href="http://www.cns.bu.edu/about/cas.html" target="_blank">http://www.cns.bu.edu/about/cas.html</a></div>
                                                          </div>
                                                          <div><a
                                                          moz-do-not-send="true"
href="http://cns.bu.edu/%7Esteve" target="_blank">http://cns.bu.edu/~steve</a></div>
                                                          <div><a
                                                          moz-do-not-send="true"
href="mailto:steve@bu.edu" target="_blank">steve@bu.edu</a></div>
                                                          </div>
                                                          </div>
                                                          </div>
                                                          <div><br>
                                                          </div>
                                                          </div>
                                                          </span></div>
                                                          </span><br>
                                                          </span><br>
                                                          </font></div>
                                                        <br>
                                                      </div>
                                                    </div>
                                                  </div>
                                                </blockquote>
                                              </div>
                                              <br>
                                            </div>
                                          </blockquote>
                                          <br>
                                        </div>
                                      </div>
                                      <pre cols="72"><span><font color="#888888">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: <a moz-do-not-send="true" href="tel:517-353-4388" value="+15173534388" target="_blank">517-353-4388</a></font></span><div>
Fax: <a moz-do-not-send="true" href="tel:517-432-1061" value="+15174321061" target="_blank">517-432-1061</a>
Email: <a moz-do-not-send="true" href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" href="http://www.cse.msu.edu/%7Eweng/" target="_blank">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</div></pre>
                                    </div>
                                  </blockquote>
                                </div>
                                <br>
                              </div>
                            </blockquote>
                            <br>
                            <pre cols="72">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: <a moz-do-not-send="true" href="tel:517-353-4388" value="+15173534388" target="_blank">517-353-4388</a>
Fax: <a moz-do-not-send="true" href="tel:517-432-1061" value="+15174321061" target="_blank">517-432-1061</a>
Email: <a moz-do-not-send="true" href="mailto:weng@cse.msu.edu" target="_blank">weng@cse.msu.edu</a>
URL: <a moz-do-not-send="true" href="http://www.cse.msu.edu/%7Eweng/" target="_blank">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</pre>
                          </div>
                        </div>
                      </div>
                    </blockquote>
                  </div>
                  <br>
                </div>
              </blockquote>
              <br>
              <br>
              <pre class="moz-signature" cols="72">-- 
Prof. Dr. Danko Nikolić

Web:
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://www.danko-nikolic.com">http://www.danko-nikolic.com</a>

Mail address 1:
Department of Neurophysiology
Max Planck Institut for Brain Research
Deutschordenstr. 46
60528 Frankfurt am Main
GERMANY

Mail address 2:
Frankfurt Institute for Advanced Studies
Wolfgang Goethe University
Ruth-Moufang-Str. 1
60433 Frankfurt am Main
GERMANY

----------------------------
Office: (..49-69) 96769-736
Lab: (..49-69) 96769-209
Fax: (..49-69) 96769-327
<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:danko.nikolic@gmail.com">danko.nikolic@gmail.com</a>
----------------------------</pre>
            </div>
          </div>
        </div>
      </blockquote>
      <br>
      <br>
      <pre class="moz-signature" cols="72">-- 
Prof. Dr. Danko Nikolić

Web:
<a moz-do-not-send="true" class="moz-txt-link-freetext" href="http://www.danko-nikolic.com">http://www.danko-nikolic.com</a>

Mail address 1:
Department of Neurophysiology
Max Planck Institut for Brain Research
Deutschordenstr. 46
60528 Frankfurt am Main
GERMANY

Mail address 2:
Frankfurt Institute for Advanced Studies
Wolfgang Goethe University
Ruth-Moufang-Str. 1
60433 Frankfurt am Main
GERMANY

----------------------------
Office: (..49-69) 96769-736
Lab: (..49-69) 96769-209
Fax: (..49-69) 96769-327
<a moz-do-not-send="true" class="moz-txt-link-abbreviated" href="mailto:danko.nikolic@gmail.com">danko.nikolic@gmail.com</a>
----------------------------</pre>
    </blockquote>
    <br>
    <pre class="moz-signature" cols="72">-- 
--
Juyang (John) Weng, Professor
Department of Computer Science and Engineering
MSU Cognitive Science Program and MSU Neuroscience Program
428 S Shaw Ln Rm 3115
Michigan State University
East Lansing, MI 48824 USA
Tel: 517-353-4388
Fax: 517-432-1061
Email: <a class="moz-txt-link-abbreviated" href="mailto:weng@cse.msu.edu">weng@cse.msu.edu</a>
URL: <a class="moz-txt-link-freetext" href="http://www.cse.msu.edu/~weng/">http://www.cse.msu.edu/~weng/</a>
----------------------------------------------

</pre>
  </body>
</html>