****************************************************************************************************************************<br><div class="gmail_quote"><div class="HOEnZb"><div class="h5"><div class="gmail_quote"><div class="gmail_quote">
<div><div>
CALL FOR PAPERS<br>
****************************************************************************************************************************<br>
SML@IEEE BigData 2013: International Workshop on Scalable Machine<br>
Learning: Theory and Applications<br>
<br>
<a href="https://sites.google.com/site/bigdatasml/home" target="_blank">https://sites.google.com/site/bigdatasml/home</a><br>
Co-located with IEEE BigData 2013, October 6, 2013, Santa Clara, CA, USA<br>
<br>
WORKSHOP AIMS and SCOPE<br>
-----------------------------------------------<br>
Big Data are encountered in various areas, including Internet search,<br>
social networks, finance, business sectors, meteorology, genomics,<br>
connectomics, complex physics simulations, and biological and<br>
environmental research. The huge volume, high velocity, significant<br>
variety, and low veracity bring challenges to current machine learning<br>
techniques. It is desirable to scale up machine learning techniques<br>
for modeling and analyzing the big data from various domains.<br>
<br>
The workshop aims to provide professionals, researchers, and<br>
technologists with a single forum where they can discuss and share the<br>
state-of-the-art of scalable machine learning technologies from theory<br>
and applications.<br>
<br>
TOPICS OF INTEREST<br>
-----------------------------------------------<br>
Topics of interest include, but not limited to:<br>
<br>
* Distributed machine learning architectures<br>
- Data separation and integration techniques<br>
- Machine learning algorithms for GPUs<br>
- Machine learning algorithms for clouds<br>
- Machine learning algorithms for clusters<br>
* Theory and algorithms of data reduction techniques for Big Data<br>
- Online/incremental learning algorithms<br>
- Random projection<br>
- Hashing techniques<br>
- Data sampling algorithms<br>
* Theory and algorithms of large-scale matrix approximation<br>
- Bound analysis of matrix approximation algorithms<br>
- Parallel matrix factorization<br>
- Parallel multiway array factorization<br>
- Online dictionary learning<br>
- Distributed topic modeling algorithms<br>
* Heterogeneous learning on Big multi-modality Data<br>
- Multiview learning<br>
- Multitask learning<br>
- Transfer learning<br>
- Semi-supervised learning<br>
- Active learning<br>
* Temporal analysis and spatial analysis in Big Data<br>
- Real time analysis for data stream<br>
- Trend prediction in financial data<br>
- Topic detection in instant message systems<br>
- Real time modeling of events in dynamic networks<br>
- Spacial modeling on maps<br>
* Scalable Machine Learning in large graphs<br>
- Communities discovery and analysis in social networks<br>
- Link prediction in networks<br>
- Anomaly detection in social networks<br>
- Authority identification and influence measurement in social networks<br>
- Fusion of information from multiple blogs, rating systems, and<br>
social networks<br>
- Integration of text, videos, images, sounds in social media<br>
- Recommender systems<br>
* Novel applications of scalable machine learning in<br>
- Healthcare<br>
- Cybersecurity<br>
- Mobile computing such as location-based service, mobile networks, etc.<br>
- Smart cities<br>
- Astronomy<br>
- Biological data analysis<br>
<br>
IMPORTANT DATES<br>
-----------------------------------------------<br>
* August 2, 2013: Due date for workshop papers submission<br>
* August 30, 2013: Notification of paper decision to authors<br>
* September 25, 2013: Camera-ready of accepted papers<br>
* October 6 2013: Workshop<br>
<br>
SUBMISSION INFORMATION<br>
-----------------------------------------------<br>
We call for original and unpublished research paper contribution of<br>
short (2-4 pages) and full (6-8 pages) manuscripts to the workshop<br>
using IEEE Computer Society Proceedings Manuscript Formatting.<br>
<br>
Papers should be submitted via the online submission system. If you<br>
do not have an account, you will be asked to sign up for an account.<br>
Please select "Workshop/Scalable Machine Learning: Theory and<br>
Algorithms" when you submit papers.<br>
<br>
Each accepted paper is required at least a workshop registration<br>
regardless of the status of the registered author. Also, one of the<br>
authors (or a qualified substitute) must give a presentation of the<br>
paper at the workshop.<br>
<br>
The workshop papers will be part of the conference proceedings. They<br>
will be indexed by ieee explore.<br>
<br>
ORGANIZING COMMITTEE<br>
-----------------------------------------------<br>
* Irwin King, The Chinese University of Hong Kong<br>
* Michael R. Lyu, The Chinese University of Hong Kong<br>
* Michael Mahoney, Stanford University<br>
* Zenglin Xu, Purdue University<br>
* Haiqin Yang, The Chinese University of Hong Kong<br>
<br>
CONFIRMED INVITED SPEAKERS<br>
-----------------------------------------------<br></div></div>
* Mikhail Bilenko, Microsoft research<div>
* Carlos Guestrin, University of Washington<br>
* Alek Kolcz, Twitter<br></div>
* Alex Smola, Carnegie Mellon University
</div><br>
</div><br>
</div></div></div><br>