<div dir="ltr"><div dir="ltr"><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, Jun 27, 2023 at 6:16 PM Artur Dubrawski <<a href="mailto:awd@cs.cmu.edu">awd@cs.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">This will be fun!<div><br></div><div>Please mark your calendars and join to cheer for Sebastian while enjoying a presentation of exceptional quality.</div><div><br></div><div>Cheers</div><div>Artur<br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">Diane Stidle</strong> <span dir="auto"><<a href="mailto:stidle@andrew.cmu.edu" target="_blank">stidle@andrew.cmu.edu</a>></span><br>Date: Tue, Jun 27, 2023 at 4:24 PM<br>Subject: Thesis Defense - July 12, 2023 - Sebastian Caldas - Collaborative learning by leveraging siloed data<br>To: <a href="mailto:ml-seminar@cs.cmu.edu" target="_blank">ml-seminar@cs.cmu.edu</a> <<a href="mailto:ML-SEMINAR@cs.cmu.edu" target="_blank">ML-SEMINAR@cs.cmu.edu</a>>, <<a href="mailto:cler@pitt.edu" target="_blank">cler@pitt.edu</a>>, <<a href="mailto:martin.jaggi@epfl.ch" target="_blank">martin.jaggi@epfl.ch</a>><br></div><br><br>
<div>
<p><i><b>Thesis Defense</b></i></p>
<p>Date: July 12, 2023<br>
Time: 4:00pm (EDT)<br>
Place: GHC 8102 & Remote<br>
PhD Candidate: Sebastian Caldas</p>
<p><b>Title: </b><b>Collaborative learning by leveraging siloed
data</b></p>
<div>Abstract:<br>
<div>Regulations can often limit stakeholders’ modeling
capabilities by preventing data sharing. For example, in order
to protect patient privacy, clinical centers may be unable to
share their data and thus lack representative records to learn
about a rare condition. To address this challenge, previous work
in machine learning has shown that these stakeholders benefit
from training models in a collaborative fashion, improving their
predictive performance. However, as we start training these
collaborative models in real-world settings, and in order to be
truly useful, they need to provide utility along dimensions
beyond predictive performance. In this thesis, we propose
methods and algorithms to improve collaborative models that
leverage siloed data along three dimensions. In the first part,
we propose methods to reduce the communication footprint of
models learned by mobile devices cooperating over edge networks,
allowing for higher capacity models to be trained. Then, in the
second part, we introduce an algorithm that provides
explanations about predictions of models trained across clinical
centers, thus improving their clinical utility. Finally, in the
third part, we address the need to encode expert supervision
into collaborative models trained using on-device data,
increasing the class of problems we can tackle in these
scenarios.</div>
<div><b><br>
</b></div>
<div><b>Thesis Committee:</b> <br>
Artur Dubrawski (Chair)<br>
Virginia Smith<br>
Gilles Clermont (University of Pittsburgh) <a href="mailto:cler@pitt.edu" target="_blank">cler@pitt.edu</a><br>
Martin Jaggi (EPFL) <a href="mailto:martin.jaggi@epfl.ch" target="_blank">martin.jaggi@epfl.ch</a></div>
<div><br>
</div>
<b>Link to the draft document: </b><a href="https://drive.google.com/file/d/1xTPUERARdnQnMSNCnu2VXrWk1YFKQOqp/view?usp=sharing" target="_blank">https://drive.google.com/file/d/1xTPUERARdnQnMSNCnu2VXrWk1YFKQOqp/view?usp=sharing</a>
<div><br>
</div>
<div><b>Zoom meeting link:</b> <a href="https://www.google.com/url?q=https://cmu.zoom.us/j/92902855666?pwd%3Da3l4V3ppQlp1K252K2doSjNTRlhPdz09&sa=D&source=calendar&ust=1688311717182551&usg=AOvVaw0fNQndryXEeSLoOO-ZhNfp" style="font-family:Roboto,Arial,sans-serif;font-size:14px;letter-spacing:0.2px" target="_blank">https://cmu.zoom.us/j/92902855666?pwd=a3l4V3ppQlp1K252K2doSjNTRlhPdz09</a></div>
</div>
<pre cols="72">--
Diane Stidle
PhD Program Manager
Machine Learning Department
Carnegie Mellon University
<a href="mailto:stidle@andrew.cmu.edu" target="_blank">stidle@andrew.cmu.edu</a></pre>
</div>
</div></div></div>
</blockquote></div></div>