<div dir="ltr">Autonians,<div><br></div><div>If you are available please join this important talk by Andy who will be delivering his MS thesis presentation tomorrow at 3pm.<div><br>Cheers,</div><div>Artur</div><div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">Chufan Gao</strong> <span dir="auto"><<a href="mailto:chufang@andrew.cmu.edu">chufang@andrew.cmu.edu</a>></span><br>Date: Wed, Aug 10, 2022 at 10:28 AM<br>Subject: Re: MSR Thesis Talk: Addressing Time-series Signal Quality in Healthcare Data<br>To: <<a href="mailto:ri-people@lists.andrew.cmu.edu">ri-people@lists.andrew.cmu.edu</a>>, Artur Dubrawski <<a href="mailto:awd@cs.cmu.edu">awd@cs.cmu.edu</a>>, Jeff Schneider <<a href="mailto:jeff4@andrew.cmu.edu">jeff4@andrew.cmu.edu</a>>, Clermont, Gilles <<a href="mailto:cler@pitt.edu">cler@pitt.edu</a>>, Benedikt Boecking <<a href="mailto:boecking@andrew.cmu.edu">boecking@andrew.cmu.edu</a>>, Barbara (B.J.) Fecich <<a href="mailto:barbarajean@cmu.edu">barbarajean@cmu.edu</a>><br></div><br><br><div dir="ltr">Hi All,<br><br>A gentle reminder that this is happening tomorrow at 3pm EST in NSH A507!<br><div><div dir="ltr" data-smartmail="gmail_signature"><div dir="ltr"><b>Zoom:</b> <a href="https://www.google.com/url?q=https://cmu.zoom.us/j/5223311585&sa=D&source=calendar&ust=1660068159564898&usg=AOvVaw36AlMyStV4M9wAJcfGvQ2R" style="color:rgb(26,115,232);font-family:Roboto,Helvetica,Arial,sans-serif" target="_blank">https://cmu.zoom.us/j/5223311585</a> <br></div><div dir="ltr"><br></div><div dir="ltr">Sincerely,<div>Chufan Gao</div><div>Robotics Institute, AutonLab, Carnegie Mellon University</div></div></div></div><br></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Aug 4, 2022 at 2:30 PM Chufan Gao <<a href="mailto:chufang@andrew.cmu.edu" target="_blank">chufang@andrew.cmu.edu</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><br></div><div><br></div>I will be giving my MSR thesis talk on <b>Thursday, August 11th, 2022 at 3:00 PM - 4:00 PM EST in NSH A507</b>. Everyone is invited!<br> <div><b>Date: </b>Thursday, August 11th, 2022<br><b>Time: </b>3:00 PM - 4:00 PM EST<br><b>Location: </b>Newell-Simon Hall (NSH) A507<div><b>Zoom:</b><span style="background-color:rgb(255,255,255)"> <a href="https://www.google.com/url?q=https://cmu.zoom.us/j/5223311585&sa=D&source=calendar&ust=1660068159564898&usg=AOvVaw36AlMyStV4M9wAJcfGvQ2R" style="color:rgb(26,115,232);font-family:Roboto,Helvetica,Arial,sans-serif" target="_blank">https://cmu.zoom.us/j/5223311585</a> </span></div><div><br></div><div><b style="font-family:arial,sans-serif">Title:</b><span style="font-family:arial,sans-serif"> </span>Addressing Time-series Signal Quality in Healthcare Data<br style="font-family:arial,sans-serif"></div><div><br></div><div><b style="font-family:arial,sans-serif">Abstract: </b>Healthcare data time-series signal quality assessment (SQA) plays a vital role in the accuracy and reliability of machine learning algorithms to analyze health metrics. However, these signals are often corrupted with different kinds of noises and artifacts, including Baseline Wander, Muscle Artifacts, Powerline Interference, and Equipment Failure. This can lead to vital, potentially deadly, errors in the medical domain. This can include inaccurate calculation of basic health features like Heart Rate, clinical alarm burnout from bedside monitors, as well as disrupting general downstream machine learning tasks. While some work has been done in the area of open-source signal quality analysis in general, there are very few open source implementations of signal quality analysis frameworks that attempt to reproduce and expand on existing results on open source datasets. </div><div><br></div><div>First, we propose an open-source implementation of signal quality indices (SQIs) for analysis of electrocardiogram (ECG), plethysmography, and more. We aim to codify and reproduce SQIs and results from The Physionet Signal Quality Classification 2011 Challenge. We show that these SQIs may be used for signal quality outlier detection in a real world clinical dataset from University of Pittsburgh Medical Center (UPMC). Secondly, in the case of another common healthcare SQA issue: ECG denoising, we compare Wavelet, EMD, and Convolutional Autoencoder denoising techniques. We show that Convolutional Autoencoder denoising performs the best on the open MIT-BIH Arrhythmia Noise Stress Test dataset, and evaluate it on the UPMC dataset. To our knowledge, we are the first to provide an open source implementation of these two SQA tasks that is validated on public datasets. Ideally, this work serves as an accessible, open source, toolkit for signal quality analysis and ECG denoising. </div><div><br></div><div><div><font size="2"><span style="font-family:arial,sans-serif"><b>Committee:</b><br>Professor Artur Dubrawski (advisor)<br>Professor Jeff Schneider<br></span></font></div><div><font size="2"><span style="font-family:arial,sans-serif">Professor Gilles Clermont</span></font></div><div><font size="2"><span style="font-family:arial,sans-serif">PhD Student Benedikt Boecking</span></font></div></div><div><br clear="all"><div><div dir="ltr"><div dir="ltr">Sincerely,<div>Chufan Gao</div><div>Robotics Institute, AutonLab, Carnegie Mellon University</div></div></div></div></div></div></div>
</blockquote></div>
</div></div></div></div>