<div dir="ltr">May be quite relevant to many of us.<div><br></div><div>Artur</div><div><br><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">---------- Forwarded message ---------<br>From: <strong class="gmail_sendername" dir="auto">Sharon Cavlovich</strong> <span dir="auto"><<a href="mailto:sharonw@cs.cmu.edu">sharonw@cs.cmu.edu</a>></span><br>Date: Thu, Jun 3, 2021 at 12:33 PM<br>Subject: ML/Duolingo Seminar - David Sontag - June 8, 2021 @ 10:30am<br>To: <<a href="mailto:ml-seminar@cs.cmu.edu">ml-seminar@cs.cmu.edu</a>>, Will Monroe <<a href="mailto:monroe@duolingo.com">monroe@duolingo.com</a>>, Zachary Lipton <<a href="mailto:zlipton@cmu.edu">zlipton@cmu.edu</a>>, Andrej Risteski <<a href="mailto:aristesk@andrew.cmu.edu">aristesk@andrew.cmu.edu</a>>, David Sontag <<a href="mailto:dsontag@csail.mit.edu">dsontag@csail.mit.edu</a>><br></div><br><br><div dir="ltr"><div>Please join us for a ML/Duolingo Seminar!</div><div><br></div><div>June 8, 2021</div><div>10:30am EDT</div><div><a href="https://cmu.zoom.us/j/97102017174?pwd=RWZ1aE9Qd3pKcXRFWSttVkp2bzBhdz09" target="_blank">Zoom Link</a></div><div><br>Meeting ID: 971 0201 7174<br>Passcode: 814851</div><div><br></div><div><img src="cid:ii_kph45za90" alt="david_headshot.jpeg" style="margin-right:0px" width="110" height="121"></div><div>Speaker: <a href="https://people.csail.mit.edu/dsontag/" target="_blank">David Sontag</a>, MIT</div><div><br></div><div>Title: Learning Deep Markov Models for Precision Medicine<br>
<br>
Abstract:<br>
I present a new approach to learning from temporal data, coupling deep learning with probabilistic inference. Applied to learning disease progression models from clinical data, our algorithms learn rich representations that are capable of answering counterfactual questions<br>
such as which treatment is most appropriate to which patient, providing a new theoretical framework for precision medicine.<br>
<br>
Making valid causal inferences from observational data requires a number of assumptions to be satisfied. I show how machine learning can be used to test and explain one of these (overlap) and how machine learning can help circumvent another (hidden confounding). Along the way, I'll make connections to recent work on domain adaptation and dataset shift.<br>
<br>
Finally, I discuss my vision for the future, where these methods are scalably used to guide millions of patients' health care. Doing so will require policy and legislative changes to improve health data collection and curation, new algorithms for extracting treatment and outcomes from clinical text, and advances in human-computer interaction to safely and effectively explain algorithm predictions to patients and providers.<br>
<br>
Bio:<br>
David <span>Sontag</span> is an Associate Professor in the Department of Electrical Engineering and Computer Science (EECS) at MIT, and member of the Institute for Medical Engineering and Science (IMES) and the Computer Science and Artificial Intelligence Laboratory (CSAIL). Prior to joining MIT, Dr. <span>Sontag</span> was an Assistant Professor in Computer Science and Data Science at New York University from 2011 to 2016, and a postdoctoral researcher at Microsoft Research New England. Dr. <span>Sontag</span> received the Sprowls award for outstanding doctoral thesis in Computer Science at MIT in 2010, best paper awards at the conferences Empirical Methods in Natural Language Processing (EMNLP), Uncertainty in Artificial Intelligence (UAI), and Neural Information Processing Systems (NeurIPS), faculty awards from Google, Facebook, and Adobe,<br>
and a National Science Foundation Early Career Award. Dr. <span>Sontag</span> received a B.A. from the University of California, Berkeley.<div><div id="m_5208980751425852198gmail-:5jo"><img src="https://ssl.gstatic.com/ui/v1/icons/mail/images/cleardot.gif"></div></div></div><div><br>-- <br><div dir="ltr" data-smartmail="gmail_signature"><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><div><div dir="ltr"><pre style="text-transform:none;text-indent:0px;letter-spacing:normal;font-size:12px;font-style:normal;font-weight:normal;word-spacing:0px;background-color:rgb(255,255,255)" cols="72">--
Sharon Cavlovich
Senior Department Administrative Assistant | Machine Learning Department
Carnegie Mellon University
5000 Forbes Avenue | Gates Hillman Complex 8215
Pittsburgh, PA 15213
412.268.5196 (office) | 412.268.3431 (fax)</pre></div></div></div></div></div></div></div></div></div></div>
</div></div></div>